全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Tightly-Secure Authenticated Key Exchange without NAXOS’ Approach Based on Decision Linear Problem

DOI: 10.4236/oalib.1103033, PP. 1-16

Subject Areas: Information and Communication: Security, Privacy, and Trust

Keywords: AKE, eCK Model, NAXOS’ Approach, Decision Linear Assumption

Full-Text   Cite this paper   Add to My Lib

Abstract

Design Secure Authenticated Key Exchange (AKE) protocol without NAXOS approach is remaining as an open problem. NAXOS approach [4] is used to hide the ephemeral secret key from an adversary even if the adversary in somehow may obtain the ephemeral secret key. Using NAXOS approach will cause two main drawbacks: (i) leaking of the static secret key which will be utilized in computing the exponent of the ephemeral public key; (ii) maximization of using random oracle when applying to the exponent of the ephemeral public key and session key derivation. In this paper, we present another AKE-secure without NAXOS approach based on decision linear assumption in the random oracle model. We fasten our security using games sequences tool which gives tight security for our protocol.

Cite this paper

Mohamed, M. , Wang, X. and Zhang, X. (2016). Tightly-Secure Authenticated Key Exchange without NAXOS’ Approach Based on Decision Linear Problem. Open Access Library Journal, 3, e3033. doi: http://dx.doi.org/10.4236/oalib.1103033.

References

[1]  Bellare, M. and Rogaway, P. (1993) Entity Authentication and Key Distribution. Crypto 1993, LNCS 773, 110-125.
[2]  Bellare, M., Canetti, R. and Krawczyk, H. (1998) A Modular Approach to the Design and Analysis of Authentication and Key Exchange Protocols. Proceedings of the 30th Annual ACM Symposium on Theory of Computing, ACM, Location, pp.
[3]  Canetti, R. and Krawczyk, H. (2001) Analysis of Key-Exchange Protocols and Their Use for Building Secure Channels. Eurocrypt 2001, LNCS 2045, 453-474.
[4]  LaMacchia, B., Lauter, K. and Mityagin, A. (2007) Stronger Security of Authenticated Key Exchange. ProvSec 2007, LNCS 4784, 1-16.
[5]  Ustaoglu, B. (2008) Obtaining a Secure and Efficient Key Agreement Protocol for (H)MQV and NAXOS. Designs, Codes and Cryptography, 46, 329-342. Extended version available at http://eprint.iacr.org/2007/123  
[6]  Huang, H. and Cao, Z. (2008) Strongly Secure Authenticated Key Exchange Protocol Based on Computational Diffie-Hellman Problem. Inscrypt.
[7]  Lee, J. and Park, J. (2008) Authenticated Key Exchange Secure under the Computational Diffie-Hellman Assumption.
http://eprint.iacr.org/2008/344
[8]  Lee, J. and Park, C. (2008) An Efficient Key Exchange Protocol with a Tight Security Reduction.
http://eprint.iacr.org/2008/345
[9]  Okamoto, T. (2007) Authenticated Key Exchange and Key Encapsulation in the Standard Model. Asiacrypt 2007, LNCS 4833, 474-484.
[10]  Kim, M., Fujioka, A. and Ustaoglu, B. (2009) Strongly Secure Authenticated Key Exchange without NAXOS’s Approach. In: Advances in Information and Computer Security, Springer Berlin Heidelberg, 174-191.
[11]  Boneh, D., Boyen, X. and Shacham, H. (2004) Short Group Signatures. In: Franklin, M., Ed., Proceedings of Crypto 2004, Volume 3152 of LNCS, Springer-Verlag, , 41-55.
http://dx.doi.org/10.1007/978-3-540-28628-8_3
[12]  Joux, A. and Nguyen, K. (2003) Separating Decision Diffie-Hellman from Computational Diffie-Hellman in Cryptographic Groups. Journal of Cryptology, 16, 239-247.
http://dx.doi.org/10.1007/s00145-003-0052-4
[13]  Shoup, V. (1997) Lower Bounds for Discrete Logarithms and Related Problems. In: Fumy, W., Ed., Proceedings of Eurocrypt 1997, Volume 1233 of LNCS, Springer-Verlag, 256-266.
[14]  Pointcheval, D. and Stern, J. (2000) Security Arguments for Digital Signatures and Blind Signatures. Journal of Cryptology, 13, 361-396.
http://dx.doi.org/10.1007/s001450010003
[15]  Krawczyk, H. (2005) HMQV: A High-Performance Secure Diffie-Hellman Protocol. Crypto 2005, LNCS 3621, 546-566.
[16]  Ustaoglu, B. (2008) Obtaining a Secure and Efficient Key Agreement Protocol for (H)MQV and NAXOS. Designs, Codes and Cryptography, 46, 329-342.
http://dx.doi.org/10.1007/s10623-007-9159-1
[17]  Wu, J. and Ustaoglu, B. (2009) Efficient Key Exchange with Tight Security Reduction. IACR Cryptology ePrint Archive, 2009, 288.
[18]  Li, H. and Wu, C.K. (2012) CMQV : An Authenticated Key Exchange Protocol from CMQV. Science China Information Sciences, 55, 1666-1674.
http://dx.doi.org/10.1007/s11432-011-4310-z
[19]  Mohamed, M., Wang, X.F. and Zhang, X.S. (2015) Efficient Secure Authenticated Key Exchange without NAXOS’s Approach Based on Decision Linear Problem. Collaborative Computing: Networking, Applications, and Worksharing. Springer International Publishing, 243-256.

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413