全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Environmental Effect and Acetylsalicilyc Acid on Agronomic Performance of Three Sweet Potato Genotypes

DOI: 10.4236/oalib.1103009, PP. 1-7

Subject Areas: Agricultural Science

Keywords: Sweet Potatoes, Systemic Acquired Resistance, Acetylsalicylic Acid, Potassium Phosphite, ANOVA

Full-Text   Cite this paper   Add to My Lib

Abstract

The present research on the effect of chemical inducers of systemic acquired resistance in sweet potato (Ipomoea batatas Lam.) was developed during 2012-2013 at Canete, Peru. The objective was to determine the effectiveness of some chemicals used for the induction of systemic resistance on agronomic performance of sweet potato in order to improve overall health in the fields, increase of plant survival and reduce the impact of agrochemical applications. Three sweet potato genotypes were sown in RCBD with 3 replications during in the winter of 2012 and summer of 2013. Additionally two chemical inducers of SAR, potassium phosphite (2.5 ml·L1) and acetylsalicylic acid (100 mg·L1) were applied plus untreated control plots. The results indicated that there were no statistical differences (p > 0.05) for root weight·plant1 or survival percentage and there were statistical differences in weight of foliage·plant1 for chemical treatments. Statistical differences were found between seasons and interaction of seasons and genotypes for foliage weight, suggesting a physiological effect by the application of inducing systemic resistance chemicals on the agronomic performance of sweet potato. It was concluded that specific effect of acetylsalicylic acid increased the weight of foliage·plant1 in genotypes of sweet potato and there were no influences for root yield.

Cite this paper

Liza, S. C. , Saenz, H. H. and Torres, O. C. (2016). Environmental Effect and Acetylsalicilyc Acid on Agronomic Performance of Three Sweet Potato Genotypes. Open Access Library Journal, 3, e3009. doi: http://dx.doi.org/10.4236/oalib.1103009.

References

[1]  Eguren, F. (2012) Eficiencia y rendimientos en la agricultura peruana. La revista Agraria, No. 141, 11-13.
[2]  Ministerio de Agricultura y Riego (2013) Dinámica agropecuaria 2003-2012. Oficina de Estudios Económicos y Estadísticos (OEEE-MINAGRI), Lima, 193 p.
[3]  Raskin, I. (1992) Role of Salicylic Acid in Plants. Annual Review of Plant Biology, 43, 439- 463.
http://dx.doi.org/10.1146/annurev.pp.43.060192.002255
[4]  Walters, D.R. (2010) Induced Resistance: Destined to Remain on the Sidelines of Crop Protection? Phytoparasitica, 38, 1-4.
http://dx.doi.org/10.1007/s12600-009-0067-y
[5]  Lyon, G. (2007) Agents That Can Elicit Induced Resistance. In: Walters, D.R., Newton, A.C. and Lyon G.D., Eds., Induced Resistance for Plant Defense: A Sustainable Approach to Crop Protection, Blackwell Publishing Ltd., Oxford, 9-29.
http://dx.doi.org/10.1002/9780470995983.ch2
[6]  Horvath, E., Szalai, G. and Janda, T. (2007) Induction of Abiotic Stress Tolerance by Salicylic Acid Signaling. Journal of Plant Growth Regulation, 26, 290-300.
http://dx.doi.org/10.1007/s00344-007-9017-4
[7]  Lebeis, S.L., et al. (2015) Salicylic Acid Modulates Colonization of the Root Microbiome by Specific Bacterial Taxa. Science, 349, 860-864.
http://dx.doi.org/10.1126/science.aaa8764
[8]  Song, G.C., Sim, H.-J., Kim, S.-G. and Ryu, C.-M. (2016) Root-Mediated Transmission of Systemic Acquired Resistance. Annals of Botany, 118, 1-12.
[9]  Delaney, T.P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella, M., Kessmann, H. and Ward, E. (1994) A Central Role of Salicylic Acid in Plant Disease Resistance. Science, 266, 1247-1250.
http://dx.doi.org/10.1126/science.266.5188.1247
[10]  Rickard, D.A. (2000) Review of Phosphorus Acid and Its Salts as Fertilizer Materials. Journal of Plant Nutrition, 23, 161-180.
http://dx.doi.org/10.1080/01904160009382006
[11]  Reymond, P. and Farmer, E. (1998) Jasmonate and Salicylate as Global Signals for Defense Gene Expression. Current Opinion in Plant Biology, 1, 404-411.
http://dx.doi.org/10.1016/S1369-5266(98)80264-1
[12]  Fonseca, C., Zuger, R., Walker, T. and Molina, J. (2002) Estudio de impacto de la adopción de las nuevas variedades de camote liberadas por el INIA, en la costa central Perú. Caso del valle de Ca?ete, Lima, Perú, Centro Internacional de la Papa (CIP), 24 p.
[13]  USAID (2006) Boletín técnico de producción: El Uso del ácido Salicílico y Fosfonatos (Fosfitos) para Activar el Sistema de Resistencia de la Planta (SAR). Agosto 2006. USAID- RED. Oficina FHIA, La Lima, Cortes, Honduras, 4 p.
[14]  Balzarini, M.G., Gonzalez, L., Tablada, M., Casanoves, F., Di Rienzo, J.A. and Robledo, C.W. (2008) InfoStat. Manual delUsuario. Editorial Brujas, Córdoba, Argentina.
[15]  Dempsey, D.A., Shah, J. and Klessig, D.F. (1999) Salicylic Acid and Disease Resistance in Plants. Critical Reviews in Plant Sciences, 18, 547-575.
http://dx.doi.org/10.1080/07352689991309397
[16]  Van Loon, L.C. (2008) Manipulating the Plant’s Innate Immune System by Inducing Resistance. Phytoparasitica, 36, 2-3.
http://dx.doi.org/10.1007/BF02981323
[17]  Zhang, K., Halitschkec, R., Yina, C., Liub, C. and Gan, S.S. (2013) Salicylic Acid 3-Hydroxylase Regulates Arabidopsis Leaf Longevity by Mediating Salicylic Acid Catabolism. PNAS, 110, 1-6.
http://dx.doi.org/10.1073/pnas.1302702110
[18]  Maldonado-Cruz, D.E., Ochoa-Martínez, D.L. and Tlapal-Bola?os, E. (2008) Efecto del ácido acetil salicílico y Bacillus subtilis en la infección causada por Cucumber Mosaic Virus en calabacita. Revista Chapingo Serie Horticultura, 14, 55-59.
[19]  Heil, M. and Bostock, M. (2003) Induced Systemic Resistance (ISR) against Pathogens in the Context of Induced Plant Defenses. Annals of Botany, 89, 503-512.
http://dx.doi.org/10.1093/aob/mcf076
[20]  Hayat, S. and Ahmad, A. (2013) Salicylic Acid, Plant Growth and Development. Eds. Springer, Springer Science Business Media, Dordrecht.

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413