全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Standard Model Matter Emerging from Spacetime Preons

DOI: 10.4236/oalib.1102788, PP. 1-5

Subject Areas: Particle Physics

Keywords: Quantum Black Hole, Statistical Mechanics, General Relativity, Loop Quantum Gravity, Hawking Radiation, Davies-Unruh Effect, Standard Model

Full-Text   Cite this paper   Add to My Lib

Abstract

I consider a statistical mechanical model for black holes as atoms of spacetime with the partition function sum taken over area eigenvalues as given by loop quantum gravity. I propose a unified structure for matter and spacetime by applying the area eigenvalues to a black hole composite model for quarks and leptons. Gravitational baryon number’s non-conservation mechanism is predicted. Argument is given for unified field theory based on gravitational and electromagnetic interactions only. The standard model of non-Abelian gauge interactions is briefly discussed.

Cite this paper

Raitio, R. (2016). Standard Model Matter Emerging from Spacetime Preons. Open Access Library Journal, 3, e2788. doi: http://dx.doi.org/10.4236/oalib.1102788.

References

[1]  Raitio, R. (2016) A Statistical Model of Spacetime, Black Holes and Matter. Open Access Library Journal, 3, e2487.
http://dx.doi.org/10.4236/oalib.1102487
[2]  Chiou, D.-W. (2015) Loop Quantum Gravity. International Journal of Modern Physics D, 24, 1530005.
http://dx.doi.org/10.1142/S0218271815300050
[3]  Rovelli, C. (2011) Zakopane Lectures on Loop Gravity.
https://arxiv.org/abs/1102.3660
[4]  Raitio, R. (1980) A Model of Lepton and Quark Structure. Physica Scripta, 22, 197.
http://dx.doi.org/10.1088/0031-8949/22/3/002
[5]  Makela, J. (2016) Phase Transition in Loop Quantum Gravity.
https://arxiv.org/abs/1604.01393
http://dx.doi.org/10.1103/physrevd.93.084002
[6]  Brown, J. and York Jr., J. (1993) Quasilocal Energy and Conserved Charges Derived from the Gravitational Action. Physical Review D, 47, 1407.
http://dx.doi.org/10.1103/PhysRevD.47.1407
[7]  Ashtekar, A., Baez, J., Corichi, A. and Krasnov, K. (1998) Quantum Geometry and Black Hole Entropy. Physical Review Letters, 80, 904-907.
https://arxiv.org/abs/gr-qc/9710007 http://dx.doi.org/10.1103/PhysRevLett.80.904
[8]  Barbero G., J.F. and Perez, A. (2015) Quantum Geometry and Black Holes.
http://arxiv.org/abs/1501.02963
[9]  Tawfik, A. and Diab, A. (2015) A Review of the Generalized Uncertainty Principle. Reports on Progress in Physics, 78, 126001.
http://dx.doi.org/10.1088/0034-4885/78/12/126001
[10]  ‘t Hooft, G. (1985) On the Quantum Structure of a Black Hole. Nuclear Physics B, 256, 727-745.
http://dx.doi.org/10.1016/0550-3213(85)90418-3
[11]  Bekenstein, J. (1972) Non Existence of Baryon Number for Static Black Holes I and II. Physical Review D, 5, 1239-1246.
[12]  Wheeler, J. (1971) Cortona Symposium on Weak Interactions. Academia Nazionale dei Lincei, Rome.
[13]  Bird, S., Cholis, I., Munoz, J., Ali-Haimoud, Y., Kamionkowski, M., Kovetz, E., Raccanelli, A. and Riess, A (2016) Did LIGO Detect Dark Matter?
http://arxiv.org/abs/1603.00464

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413