全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

“Natural Site-Directed Mutagenesis” Might Exist in Eukaryotic Cells

DOI: 10.4236/oalib.1102595, PP. 1-5

Subject Areas: Cell Biology, Genetics, Molecular Biology

Keywords: Natural Site-Directed Mutagenesis, Genetic Alteration, Mutation, CAGFs, DNA to DNA Transcription, Drug Resistance, Evolution of Eukaryotes, Antibody Diversity, Somatic Hypermutation

Full-Text   Cite this paper   Add to My Lib

Abstract

Site-directed mutagenesis refers to a man-made molecular biology method that is used to make genetic alterations in the DNA sequence of a gene of interest. But based on our recently published experimental findings, we propose that “natural site-directed mutagenesis” might exist in eukaryotic cells, which is triggered by harmful agents and co-directed by special transcription hotspots and mutation-contained intranuclear primers.

Cite this paper

Li, G. (2016). “Natural Site-Directed Mutagenesis” Might Exist in Eukaryotic Cells. Open Access Library Journal, 3, e2595. doi: http://dx.doi.org/10.4236/oalib.1102595.

References

[1]  Hutchison, C.A. and Edgell, M.H. (1971) Genetic Assay for Small Fragments of Bacteriophage φX174 Deoxyribonucleic Acid. Journal of Virology, 8, 181-189.
[2]  Hutchison, C.A., Phillips, S., Edgell, M.H., Gillam, S., Jahnke, P, and Smith, M. (1978) Mutagenesis at a Specific Position in a DNA Sequence. The Journal of Biological Chemistry, 253, 6551-6560.
[3]  Li, G.D. (2016) Certain Amplified Genomic-DNA Fragments (AGFs) May Be Involved in Cell Cycle Progression and Chloroquine Is Found to Induce the Production of Cell-Cycle-Associated AGFs (CAGFs) in Plasmodium falciparum. Open Access Library Journal, 3, e2447.
http://dx.doi.org/10.4236/oalib.1102447
[4]  Foote, S.J., Kyle, D.E., Martin, R.K., Oduola, A.M., Forsyth, K., Kemp, D.J. and Cowman, A.F. (1990) Several Alleles of the Multidrug-Resistance Gene Are Closely Linked to Chloroquine Resistance in Plasmodium falciparum. Nature, 345, 255-258.
http://dx.doi.org/10.1038/345255a0
[5]  Fidock, D.A., Nomur, T., Talley, A.K., Cooper, R.A., Dzekunov, S.M., Ferdig, M.T., et al. (2000) Mutations in the P. falciparum Digestive Vacuole Transmembrane Protein PfCRT and Evidence for Their Role in Chloroquine Resistance. Molecular Cell, 6, 861-871.
http://dx.doi.org/10.1016/S1097-2765(05)00077-8
[6]  Su, X., Kirkman, L.A., Fujioka, H. and Wellems, T.E. (1997) Complex Polymorphisms in an Approximately 330 kDa Protein Are Linked to Chloroquine-Resistant P. falciparum in Southeast Asia and Africa. Cell, 91, 593-603.
http://dx.doi.org/10.1016/S0092-8674(00)80447-X
[7]  Li, G.D. (2007) Plasmodium falciparum Chloroquine Resistance Marker Protein (Pfcrmp) May Be a Chloroquine Target Protein in Nucleus. Medical Hypotheses, 68, 332-334.
http://dx.doi.org/10.1016/j.mehy.2006.07.016
[8]  Ibraheem, Z.O., Abd Majid, R., Noor, S.M., Sedik, H.M. and Basir, R. (2014 ) Role of Different Pfcrt and Pfmdr-1 Mutations in Conferring Resistance to Antimalaria Drugs in Plasmodium falciparum. Malaria Research and Treatment, 2014, Article ID: 950424.
http://dx.doi.org/10.1155/2014/950424
[9]  Odegard, V.H. and Schatz, D.G. (2006) Targeting of Somatic Hypermutation. Nature Reviews Immunology, 6, 573- 583.
http://dx.doi.org/10.1038/nri1896
[10]  Muramatsu, M., Kinoshita, K., Fagarasan, S., Yamada, S., Shinkai, Y. and Honjo, T. (2000) Class Switch Recombination and Hypermutation Require Activation-Induced Cytidine Deaminase (AID), a Potential RNA Editing Enzyme. Cell, 102, 553-563.
http://dx.doi.org/10.1016/S0092-8674(00)00078-7
[11]  Di Noia, J.M. and Neuberger, M.S. (2007) Molecular Mechanisms of Antibody Somatic Hypermutation. The Annual Review of Biochemistry, 76, 1-22.
http://dx.doi.org/10.1146/annurev.biochem.76.061705.090740
[12]  Oprea, M., Cowell, L.G. and Kepler, T.B. (2001) The Targeting of Somatic Hypermutation Closely Resembles That of Meiotic Mutation. The Journal of Immunology, 166, 892-899.
http://dx.doi.org/10.4049/jimmunol.166.2.892
[13]  Burkovitz, A., Sela-Culang, I. and Ofran, Y. (2014) Large-Scale Analysis of Somatic Hypermutations in Antibodies Reveals Which Structural Regions, Positions and Amino Acids Are Modified to Improve Affinity. FEBS Journal, 281, 306-319.
http://dx.doi.org/10.1111/febs.12597
[14]  Storb, U., Shen, H.M., Michael, N. and Kim, N. (2001) Somatic Hypermutation of Immunoglobulin and Non-Immuno- globulin Genes. Philosophical Transactions of the Royal Society B: Biological Sciences, 356, 13-19.
http://dx.doi.org/10.1098/rstb.2000.0743
[15]  Buerstedde, J.M., Alinikula, J., Arakawa, H., McDonald, J.J. and Schatz, D.G. (2014) Targeting of Somatic Hypermutation by Immunoglobulin Enhancer and Enhancer-Like Sequences. PLOS Biology, 12, e1001831.
http://dx.doi.org/10.1371/journal.pbio.1001831
[16]  Cairns, J., Overbaugh, J. and Miller, S. (1988) The Origin of Mutants. Nature, 335, 142-145.
http://dx.doi.org/10.1038/335142a0
[17]  Hall, B.G. (1991) Adaptive Evolution That Requires Multiple Spontaneous Mutations: Mutations Involving Base Substitutions. Proceedings of the National Academy of Sciences of the United States of America, 88, 5882-5886.
http://dx.doi.org/10.1073/pnas.88.13.5882
[18]  Martincorena, I., Seshasayee, A.S. and Luscombe, N.M. (2012) Evidence of Non-Random Mutation Rates Suggests an Evolutionary Risk Management Strategy. Nature, 485, 95-98.
http://dx.doi.org/10.1038/nature10995

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413