全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Quantum Decoherence Induced by Fluctuations

DOI: 10.4236/oalib.1102466, PP. 1-20

Subject Areas: Modern Physics

Keywords: Quantum Non-Locality, Superluminal Transmission of Quantum Information, Classical Freedom, Local Relativistic Causality, EPR Paradox, Macroscopic Quantum Decoherence

Full-Text   Cite this paper   Add to My Lib

Abstract

The paper investigates the non-local property of quantum mechanics by analyzing the role of the quantum potential in generating the non-local dynamics and how they are perturbed in presence of noise. The resulting open quantum dynamics much depend by the strength of the Hamiltonian interaction: Weakly bounded systems may not be able to maintain the quantum superposition of states on large distances and lead to the classical stochastic evolution. The stochastic hydrodynamic quantum approach shows that the wave-function collapse to an eigenstates can be described by the model itself and that the minimum uncertainty principle is compatible with the relativistic postulate about the light speed as the maximum velocity of transmission of interaction. The paper shows that the Lorenz invariance of the quantum potential does not allow super-luminal transmission of information in measurements on quantum entangled states.

Cite this paper

Chiarelli, P. (2016). Quantum Decoherence Induced by Fluctuations. Open Access Library Journal, 3, e2466. doi: http://dx.doi.org/10.4236/oalib.1102466.

References

[1]  Bell, J.S. (1964) On the Einstain-Podolsky-Rosen Paradox. Physics, 1, 195-200.
[2]  Einstein, A., Podolsky, B. and Rosen, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47, 777-780.
http://dx.doi.org/10.1103/PhysRev.47.777
[3]  Greenberger, D.M., Horne, M.A., Shimony, A. and Zeilinger, A. (1990) Bell’s Theorem without Inequalities. American Journal of Physics, 58, 1131-1143.
http://dx.doi.org/10.1119/1.16243
[4]  Bialyniki-Birula, I., Cieplak, M. and Kaminski, J. (1992) Theory of Quanta. Oxford University Press, New York Oxford, 278.
[5]  Bohm, D. (1952) A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. I. Physical Review, 85, 166.
http://dx.doi.org/10.1103/PhysRev.85.166
[6]  Madelung, E. (1927) Quantentheorie in Hydrodynamischer Form. Zeitschrift für Physik, 40, 322-326.
http://dx.doi.org/10.1007/BF01400372
[7]  Jánossy, L. (1962) Zum hydrodynamischen Modell der Quantenmechanik. Zeitschrift für Physik, 169, 79-89.
http://dx.doi.org/10.1007/BF01378286
[8]  Bialyniki-Birula, I., Cieplak, M. and Kaminski, J. (1992) Theory of Quanta. Oxford University Press, New York Oxford, 87-111.
[9]  Nelson, E. (1966) Derivation of the Schrodinger Equation from Newtonian Mechanics. Physical Review, 150, 1079.
http://dx.doi.org/10.1103/PhysRev.150.1079
[10]  Nelson, E. (1967) Dynamical Theory of Brownian Motion. Princeton University Press, London.
[11]  Nelson, E. (1985) Quantum Fluctuations. Princeton University Press, New York.
[12]  Guerra, F. and Ruggero, P. (1973) New Interpretation of the Euclidean-Markov Field in the Framework of Physical Minkowski Space-Time. Physical Review Letters, 31, 1022.
http://dx.doi.org/10.1103/PhysRevLett.31.1022
[13]  Parisi, G. and Wu, Y.-S. (1981) Perturbation Theory without Gauge Fixing. Scientia Sinica, 24, 483.
[14]  Jona, G., Martinelli, F. and Scoppola, E. (1981) New Approach to the Semiclassical Limit of Quantum Mechanics. Communications in Mathematical Physics, 80, 233-254.
[15]  Ruggiero, P. and Zannetti, M. (1982) Stochastic Description of the Quantum Thermal Mixture. Physical Review Letters, 48, 963.
http://dx.doi.org/10.1103/PhysRevLett.48.963
[16]  Ruggiero, P. and Zannetti, M. (1983) Microscopic Derivation of the Stochastic Process for the Quantum Brownian Oscillator. Physical Review A, 28, 987.
http://dx.doi.org/10.1103/PhysRevA.28.987
[17]  Chiarelli, P. (2013) Quantum to Classical Transition in the Stochastic Hydrodynamic Analogy: The Explanation of the Lindemann Relation and the Analogies between the Maximum of Density at Lambda Point and That at the Water-Ice Phase Transition. Physical Review & Research International, 3, 348-366.
[18]  Weiner, J.H. and Askar, A. (1971) Particle Method for the Numerical Solution of the Time-Dependent Schrodinger Equation. The Journal of Chemical Physics, 54, 3534.
http://dx.doi.org/10.1063/1.1675377
[19]  Weiner, J.H. and Forman, R. (1974) Rate Theory for Solids. V. Quantum Brownian-Motion Model. Physical Review B, 10, 325.
http://dx.doi.org/10.1103/PhysRevB.10.325
[20]  Terlecki, G., Grun, N. and Scheid, W. (1982) Solution of the Time-Dependent Schrodinger Equation with a Trajectory Method and Application to H -H Scattering. Physics Letters A, 88, 33-36.
http://dx.doi.org/10.1016/0375-9601(82)90417-0
[21]  Gardner, C.L. (1994) The Quantum Hydrodynamic Model for Semiconductor Devices. SIAM Journal on Applied Mathematics, 54, 409-427.
http://dx.doi.org/10.1137/S0036139992240425
[22]  Bret, J.D., Gupta, S. and Zaks, A. (1984) Stochastic Quantization and Regularization. Nuclear Physics B, 233, 61-87.
http://dx.doi.org/10.1016/0550-3213(84)90170-6
[23]  Zwanziger, D. (1984) Covariant Quantization of Gauge Fields without Gribov Ambiguity. Nuclear Physics B, 192, 259-269.
http://dx.doi.org/10.1016/0550-3213(81)90202-9
[24]  Mariano, A., Facchi, P. and Pascazio, S. (2001) Decoherence and Fluctuations in Quantum Interference Experiments. Fortschritte der Physik, 49, 1033-1039.
[25]  Cerruti, N.R., Lakshminarayan, A., Lefebvre, T.H. and Tomsovic, S. (2000) Exploring Phase Space Localization of Chaotic Eigenstates via Parametric Variation. Physical Review E, 63, 016208.
http://dx.doi.org/10.1103/PhysRevE.63.016208
[26]  Calzetta, E. and Hu, B.L. (1995) Quantum Fluctuations, Decoherence of the Mean Field, and Structure Formation in the Early Universe. Physical Review D, 52, 6770-6788.
http://dx.doi.org/10.1103/PhysRevD.52.6770
[27]  Wang, C., Bonifacio, P., Bingham, R. and Mendonca, J.T. (2008) Detection of Quantum Decoherence Due to Spacetime Fluctuations. 37th COSPAR Scientific Assembly, Montréal, 13-20 July 2008, 3390.
[28]  Lombardo, F.C. and Villar, P.I. (2005) Decoherence Induced by Zero-Point Fluctuations in Quantum Brownian Motion. Physics Letters A, 336, 16-24.
http://dx.doi.org/10.1016/j.physleta.2004.12.065

[29]  Bousquet, D., Hughes, K.H., Micha, D.A. and Burghardt, I. (2001) Extended Hydrodynamic Approach to Quantum-Classical Nonequilibrium Evolution. I. Theory. The Journal of Chemical Physics, 134, 064116.
http://dx.doi.org/10.1063/1.3553174
[30]  Morato, L.M. and Ugolini, S. (2011) Stochastic Description of a Bose-Einstein Condensate. Annales Henri Poincaré, 12, 1601-1612.
http://dx.doi.org/10.1007/s00023-011-0116-1
[31]  Chiarelli, P. (2014) The Quantum Potential: The Missing Interaction in the Density Maximum of He4 at the Lambda Point? American Journal of Physical Chemistry, 2, 122-131.
http://dx.doi.org/10.11648/j.ajpc.20130206.12
[32]  Chiarelli, P. (2013) Can Fluctuating Quantum States Acquire the Classical Behavior on Large Scale? Journal of Advanced Physics, 2, 139-163.
[33]  Chiarelli, P. (2013) The Classical Mechanics from the Quantum Equation. Physical Review & Research International, 3, 1-9.
[34]  Weiner, J.H. (1983) Statistical Mechanics of Elasticity. John Wiley & Sons, New York, 315-317.
[35]  Chiarelli, P. (2013) The Uncertainty Principle Derived by the Finite Transmission Speed of Light and Information. Journal of Advanced Physics, 3, 257-266.
[36]  Chiarelli, P. (2015) The Quantum Limit to the Black Hole Mass Derived by the Quantization of Einstein Equation. Class. Quantum Physics. ArXiv: 1504.07102.

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413