全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

The Mathematical Representation of Turbulent Heat Fluxes Using Reynold’s Decomposition

DOI: 10.4236/oalib.1102184, PP. 1-6

Subject Areas: Mathematical Analysis

Keywords: Turbulent Heat Flux, Reynolds’s Decomposition, Pressure Gradient Force, Sensible Heat Flux and the Latent Heat Flux

Full-Text   Cite this paper   Add to My Lib

Abstract

From a mathematical perspective, it is fundamental to develop a rigorous background upon which to study the physical quantities of a turbulent flow. The first problem in the mathematical theory is related to the deterministic nature of chaotic systems assumed in dynamical system theory and believed to hold inturbulence. This has actually not been proved for the Navier-Stokes equations. It is in fact one of the most outstanding open problems in mathematics to determine whether given an initial condition for the velocity field there exists, in some sense, a unique solution of the Navier-Stokes equations starting with this initial condition and valid for all later times. In a turbulent atmosphere, a turbulent stress term, the Reynolds stress, must be applied. All the terms in the horizontal motion equations are the order of 10﹣4 - 10﹣3 m·s2. Under certain condition, some terms are very small and can be neglected for example, the rotational term is insignificant in the equation of vertical motion and has been omitted, instead gravitational acceleration term appears in the equation for vertical motion [1]; for steady flow, the tendency can be neglected; in the centre of high and low pressure, gradient force can be neglected; at the equator of for small scale processes, the Coriolis force can be neglected, and above the atmospheric boundary layer the stress terms can be neglected.

Cite this paper

Rauff, K. O. (2016). The Mathematical Representation of Turbulent Heat Fluxes Using Reynold’s Decomposition. Open Access Library Journal, 3, e2184. doi: http://dx.doi.org/10.4236/oalib.1102184.

References

[1]  Stull, R.B. (1988) An Introduction to Boundary Layer Meteorology. Kluwer Acad. Publ., Dordrecht, Boston, London, 666 p.
http://dx.doi.org/10.1007/978-94-009-3027-8
[2]  Foken, T. (2008) Micrometeorology. Springer-Verlag Berlin Heidelberg, 306 p.
[3]  Arya, S.P. (2001) Introduction to Micrometeorology. Academic Press, San Diego, 415 p.
[4]  Manson, P.J. and Thompson, D.J. (1992) Stochastic Backscatter in Large-Eddy Simulations of Boundary Layers. Journal of Fluid Mechanics, 242, 51-78.
http://dx.doi.org/10.1017/S0022112092002271
[5]  Etling, D. (2002) Theoretische Meteorologie. Springer, Berlin, Heidelberg, 354 p.
[6]  Salby, M.L. (1995) Fundamentals of Atmospheric Physics. Academic Press, San Diego, New York, 624 p.
[7]  Bernhardt, K. (1980) Zur Frage der Gültigkeit der Reynoldsschen Postulate. Z Meteorol, 30, 261-268.
[8]  Businger, J.A. (1982) Equations and Concepts. In: Nieuwstadt, F.T.M. and Van Dop, H., Eds., Atmospheric Turbulence and Air Pollution Modelling: A Course Held in The Hague, 21-25 September 1981, D. Reidel Publ. Co., Dordrecht, 1-36.
[9]  Bernhardt, K. (1970) Der ageostrophische Massenfluβ in der Bodenreibungsschichtbeibeschleunigungsfreier Stromung. Z Meteorol, 21, 259-279.
[10]  Lettau, H.H. (1957) Windprofil, innere Reibung und Energieumsatz in den untersten 500 m überdem Meer. Beitr Phys Atm, 30, 78-96.

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413