全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Density-Dependent Properties of Hadronic Matter in an Extended Chiral (σ, π, ω) Mean-Field Model

DOI: 10.4236/oalib.1102011, PP. 1-18

Subject Areas: Nuclear Physics

Keywords: Chiral (σ, π, ω) Model, Fermi-Liquid Properties of Nuclear Matter, Hyperonic Matter, Neutron Stars

Full-Text   Cite this paper   Add to My Lib

Abstract

Density-dependent relations among saturation properties of symmetric nuclear matter and hyperonic matter, the coupling ratios (strengths) of hyperon matter, and properties of hadronic stars are discussed by applying the conserving chiral nonlinear (s, p, w) hadronic mean-field theory. The chiral nonlinear (s, p, w) mean-field theory is an extension of the conserving nonlinear (nonchiral) s-w hadronic mean-field theory which is thermodynamically consistent, relativistic and is a Lorentz-covariant mean-field theory of hadrons. The extended chiral (s, p, w) mean-field model is one of effective models of Quantum Hadrodynamics (QHD). All the masses of hadrons are produced by the spontaneous chiral symmetry breaking, which is different from other conventional chiral partner models. By comparing both nonchiral and chiral mean-field approximations, the effects of the chiral symmetry breaking mechanism on the mass of s-meson, coefficients of nonlinear interactions, coupling ratios of hyperons to nucleons and Fermi-liquid properties are investigated in nuclear matter, hyperonic matter, and neutron stars.

Cite this paper

Uechi, S. T. and Uechi, H. (2015). Density-Dependent Properties of Hadronic Matter in an Extended Chiral (σ, π, ω) Mean-Field Model. Open Access Library Journal, 2, e2011. doi: http://dx.doi.org/10.4236/oalib.1102011.

References

[1]  Serot, B.D. and Walecka, J.D. (1986) Advances in Nuclear Physics. Vol. 16, Plenum, New York.
[2]  Serot, B.D. and Walecka, J.D. (1997) Recent Progress in Quantum Hadrodynamics. International Journal of Modern Physics E, 6, 515-631.
http://dx.doi.org/10.1142/S0218301397000299
[3]  Serot, B.D. and Uechi, H. (1987) Neutron Stars in Relativistic Hadron-Quark Models. Annals of Physics, 179, 272- 293.
http://dx.doi.org/10.1016/0003-4916(87)90137-0
[4]  Glendenning, N.K. (2000) Compact Stars. Springer-Verlag, New York.
http://dx.doi.org/10.1007/978-1-4612-1212-6
[5]  Uechi, H. (2006) Properties of Nuclear and Neutron Matter in a Nonlinear s-w-r Mean-Field Approximation with Self- and Mixed-Interactions. Nuclear Physics A, 780, 247-273.
http://dx.doi.org/10.1016/j.nuclphysa.2006.10.015
[6]  Uechi, H. (2008) Density-Dependent Correlations between Properties of Nuclear Matter and Neutron Stars in a Nonlinear s-w-r Mean-Field Approximation. Nuclear Physics A, 799, 181-209.
http://dx.doi.org/10.1016/j.nuclphysa.2007.11.003
[7]  Uechi, S.T. and Uechi, H. (2009) The Density-Dependent Correlations among Observables in Nuclear Matter and Hyperon-Rich Neutron Stars. Advances in High Energy Physics, Vol., Article ID: 640919.
[8]  Uechi, H. and Uechi, S.T. (2009) Saturation Properties and Density-Dependent Interactions among Nuclear and Hyperon Matter. The Open Nuclear & Particle Physics Journal, 2, 47-60.
[9]  Uechi, S.T. and Uechi, H. (2010) Hardon-Quark Hybrid Stars Constructed by the Nonlinear s-w-r Mean-Field Model and MIT-Bag Model. arXiv:1003.4815v1.
[10]  Uechi, S.T. and Uechi, H. (2010) Density-Dependent Relations among Properties of Hadronic Matter and Applications to Hadron-Quark Stars. Proceedings of the International Symposium on New Faces of Atomic Nuclei, Location, Date, 285-292.
[11]  Serot, B.D. (1992) Quantum Hadrodynamics. Reports on Progress in Physics, 55, 1855-1946.
http://dx.doi.org/10.1088/0034-4885/55/11/001
[12]  Uechi, H., Uechi, S.T. and Serot, B.D., Eds. (2012) Neutron Stars: The Aspect of High Density Matter, Equations of State and Related Observables. Nova Science Publishers, New York.
[13]  Uechi, H. (2004) The Theory of Conserving Approximations and the Density Functional Theory in Approximations for Nuclear Matter. Progress of Theoretical Physics, 111, 525-543.
http://dx.doi.org/10.1143/PTP.111.525
[14]  Kohn, W. and Sham, L.J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140, A1133-A1138.
http://dx.doi.org/10.1103/PhysRev.140.A1133
[15]  Kohn, W. (1999) Nobel Lecture: Electronic Structure of Matter—Wave Functions and Density Functional. Reviews of Modern Physics, 71, 1253-1266.
http://dx.doi.org/10.1103/RevModPhys.71.1253
[16]  Petkov, I.Z. and Stoitsov, M.V. (1991) Nuclear Density Functional Theory. Oxford University Press, Oxford.
[17]  Hooshyar, M.A., Reichstein, I. and Malik, F.B. (2005) Nuclear Fission and Cluster Radioactivity. Springer, Berlin.
[18]  Furnstahl, R.J., Serot, B.D. and Tang, H.-B. (1996) Analysis of Chiral Mean-Field Models for Nuclei. Nuclear Physics A, 598, 539-582.
http://dx.doi.org/10.1016/0375-9474(95)00488-2
[19]  McIntire, J., Hu, Y. and Serot, B.D. (2007) Loop Corrections and Naturalness in a Chiral Effective Field Theory. Nuclear Physics A, 794, 166-186.
http://dx.doi.org/10.1016/j.nuclphysa.2007.08.008
[20]  Furnstahl, R.J., Serot, B.D. and Tang, H.-B. (1997) Vacuum Nucleon Loops and Naturalness. Nuclear Physics A, 618, 446-454.
[21]  Serot, B.D. (2005) Article Name. In: Kovras, O., Ed., Frontiers in Field Theory, Nova Science, New York, 89.
[22]  Walecka, J.D. (1995) Theoretical Nuclear and Subnuclear Physics. Oxford University Press, New York.
[23]  Jiang, W.-Z., Li, B.-A. and Chen, L.-W. (2007) Equation of State of Isospin-Asymmetric Nuclear Matter in Relativistic Mean-Field Models with Chiral Limits. Physics Letters B, 653, 184-189.
http://dx.doi.org/10.1016/j.physletb.2007.08.004
[24]  Serot, B.D. (2007) Electromagnetic Interactions in a Chiral Effective Lagrangian for Nuclei. Annals of Physics, 322, 2811-2830.
http://dx.doi.org/10.1016/j.aop.2007.04.003
[25]  Boguta, J. and Bodmer, A.R. (1977) Relativistic Calculation of Nuclear Matter and the Nuclear Surface. Nuclear Physics A, 292, 413-428.
http://dx.doi.org/10.1016/0375-9474(77)90626-1
[26]  Boguta, J. and Stocker, H. (1983) Systematics of Nuclear Matter Properties in a Non-Linear Relativistic Field Theory. Physics Letters B, 120, 289-293.
http://dx.doi.org/10.1016/0370-2693(83)90446-X
[27]  Boguta, J. (1981) Density Dependence of the Single-Particle Potential in Nuclear Matter. Physics Letters B, 106, 250- 254.
[28]  Boguta, J. (1989) Chiral Nuclear Interactions. Nuclear Physics A, 501, 637-652.
[29]  Sarkar, S. and Chowdhury, S.K. (1985) Saturating Chiral Field Theory for the Study of Nuclear Matter in the Relativistic Hartree Approximation. Physics Letters B, 153, 358-362.
http://dx.doi.org/10.1016/0370-2693(85)90472-1
[30]  Schaffner, J. and Mishustin, I.N. (1996) Hyperon-Rich Matter in Neutron Stars. Physical Review C, 53 1416-1429.
http://dx.doi.org/10.1103/PhysRevC.53.1416
[31]  Shao, G.-Y. and Liu, Y.-X. (2009) Influence of the σ-ω Meson Interaction on Neutron Star Matter. Physical Review C, 79, Article ID: 025804.
http://dx.doi.org/10.1103/PhysRevC.79.025804
[32]  Serot, B.D. and Walecka, J.D. (1992) Chiral QHD with Vector Mesons. Acta Physica Polonica B, 23, 655-679.
[33]  Chin, S.A. (1977) A Relativistic Many-Body Theory of High Density Matter. Annals of Physics, 108, 301-367.
http://dx.doi.org/10.1016/0003-4916(77)90016-1
[34]  Uechi, H. (1990) Constraints on the Self-Consistent Relativistic. Fermi-Sea Particle Formalism in the Quantum Hadrodynamical Model. Physical Review C, 41, 744-752.
[35]  Uechi, H. (2001) Self-Consistent Structure in a Relativistic Dirac-Hartree-Fock Approximation. Nuclear Physics A, 696, 511-526.
http://dx.doi.org/10.1016/S0375-9474(01)01139-3
[36]  Day, B.D. (1978) Current State of Nuclear Matter Calculations. Reviews of Modern Physics, 50, 495-521.
http://dx.doi.org/10.1103/RevModPhys.50.495
[37]  Misner, C.W., Thorne, K.S. and Wheeler, J.W. (1973) Gravitation. W. H. Freeman and Company, New York.

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413