全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Dispersion and Growth-Rate Characteristics of a Sinusoidally Corrugated Slow-Wave Structure in Presence of Cylindrical Electron Beam

DOI: 10.4236/oalib.1102008, PP. 1-10

Subject Areas: Applied Physics, Theoretical Physics

Keywords: RTWT, Solid Electron Beam, Cold Plasma, Dispersion Relation, Growth Rate

Full-Text   Cite this paper   Add to My Lib

Abstract

A theory of relativistic traveling wave tube (RTWT) with magnetized cold plasma-filled corrugated waveguide with solid electron beam is given. The entire system influenced a strong longitudinal magnetic field that magnetized plasma and electron beam. The characteristic of the dispersion relation is obtained by numerical solutions. The effect of electron beam density, corrugated period, waveguide radius on the dispersion relation and growth rate is analyzed. Some useful results are given.

Cite this paper

Garjasi, M. and Saviz, S. (2015). Dispersion and Growth-Rate Characteristics of a Sinusoidally Corrugated Slow-Wave Structure in Presence of Cylindrical Electron Beam. Open Access Library Journal, 2, e2008. doi: http://dx.doi.org/10.4236/oalib.1102008.

References

[1]  Shiffler, D., Nation, J.A. and Graham, S.K. (1990) A High-Power, Traveling Wave Tube Amplifier. IEEE Transactions on Plasma Science, 18, 546-552.
http://dx.doi.org/10.1109/27.55926
[2]  Nusinovich, G.S., Carmel, Y., Antonsena Jr., T.M., Goebel, D.M. and Santoru, J. (1998) Recent Progress in the Development of Plasma-Filled Traveling-Wave Tubes and Backward-Wave Oscillators. IEEE Transactions on Plasma Science, 26, 628-645.
http://dx.doi.org/10.1109/27.700799
[3]  Kobayashi, S., Antonsen Jr., T.M. and Nusinovich, G.S. (1998) Linear Theory of a Plasma Loaded, Helix Type, Slow Wave Amplifier. IEEE Transactions on Plasma Science, 26, 669-679.
http://dx.doi.org/10.1109/27.700804
[4]  Pierce, J.R. and Field, L.M. (1947) Traveling-Wave Tubes. Proceedings of the IRE, 35, 108-111.
http://dx.doi.org/10.1109/JRPROC.1947.226216
[5]  Pierce, J.R. (1950) Travelling-Wave Tubes, Chapter 3. Van Nostrand Reinhold, New York.
[6]  Pierce, J.R. (1947) Theory of the Beam-Type Traveling-Wave Tube. Proceedings of the IRE, 35, 111-123.
http://dx.doi.org/10.1109/jrproc.1947.226217
[7]  Chu, L.J. and Jackson, J.D. (1948) Field Theory of Traveling-Wave Tubes. Proceedings of the IRE, 36, 853-863.
http://dx.doi.org/10.1109/JRPROC.1948.230932
[8]  Freund, H.P., Vanderplaats, N.R. and Kodis, M.A. (1993) Field Theory of a Traveling Wave Tube Amplifier with a Tape Helix. IEEE Transactions on Plasma Science, 21, 654-668.
http://dx.doi.org/10.1109/27.256785
[9]  Beck, A.H.W. (1958) Space-Charge Waves. Pergamon, New York.
[10]  Brillouin, L. (1953) Wave Propagation in Periodic Structures. Dover, New York.
[11]  Collin, R.E. (1960) Field Theory of Guided Waves. McGraw-Hill, New York.
[12]  Saviz, S. (2014) The Effect of Beam and Plasma Parameters on the Four Modes of Plasma-Loaded Traveling-Wave Tube with Tape Helix. Journal of Theoretical and Applied Physics, 8, 135.
http://dx.doi.org/10.1007/s40094-014-0135-7
[13]  Saviz, S. and Salehizadeh, F. (2014) Plasma Effect in Tape Helix Traveling-Wave Tube. Journal of Theoretical and Applied Physics, 8, 1.
http://dx.doi.org/10.1007/s40094-014-0125-9
[14]  Coaker, B. and Challis, T. (2008) Travelling Wave Tubes, Modern Devices and Contemporary Applications. Microwave Journal, 51, 32-48.
[15]  Saviz, S. and Shahi, F. (2014) Analysis of Axial Electric Field in Thermal Plasma-Loaded Helix Traveling-Wave Tube with Dielectric-Loaded Waveguide. IEEE Transactions on Plasma Science, 42, 917-923.
http://dx.doi.org/10.1109/TPS.2014.2306018
[16]  Zavyalov, M.A., Mitin, L.A., Perevodchikov, V.I., Tskhai, V.N. and Shapiro, A.L. (1994) Powerful Wideband Amplifier Based on Hybrid Plasma-Cavity Slow-Wave Structure. IEEE Transactions on Plasma Science, 22, 600-607.
http://dx.doi.org/10.1109/27.338273
[17]  Saviz, S. (2014) Plasma Thermal Effect on the Growth Rate of the Helix Traveling Wave Tube. IEEE Transactions on Plasma Science, 42, 2023-2029.
http://dx.doi.org/10.1109/TPS.2014.2329996
[18]  Miyamoto, K. (2000) Parameter Sensitivity of ITER Type Experimental Tokamak Reactor toward Compactness. Journal of Plasma and Fusion Research, 76, 166.
[19]  Xie, H.-Q. and Liu, P.-K. (2007) Theoretical Analysis of a Relativistic Travelling Wave Tube Filled with Plasma. The Chinese Physical Society, 16, 766.
[20]  Chen, F.F. (1984) Introduction to Plasma Physics and Controlled Fusion. Plenum Press, New York.
[21]  Krall, N.A. and Trivelpiece, A.W. (1973) Principles of Plasma Physics. McGraw-Hill, New York.
[22]  Goldston, R.J. and Rutherford, P.H. (1995) Introduction to Plasma Physics. Institute of Physics Publishing, Bristol.
http://dx.doi.org/10.1887/075030183X
[23]  Abubakirov, E.B. and Konyushkov, A.P. (2010) Peculiarities of Backward-Wave Amplification by Relativistic High- Current Electron Beams. IEEE Transactions on Plasma Science, 38, 1285-1291.
http://dx.doi.org/10.1109/TPS.2010.2043120
[24]  Khalil, S.M. and Mousa, N.M. (2014) Dispersion Characteristics of Plasma-Filled Cylindrical Waveguide. Journal of Theoretical and Applied Physics, 8, 111.
[25]  Babkin, A.L., Chelpanov, V.I., Dubinov, A.E., Dubinov, E.E., Hizhnyakov, A.A., Konovalov, I.V., Komilov, V.G., Selemir, V.D. and Zhdanov, V.S. (1997) Powerful Electron Accelerator “COVCHEG”: Status, Parameters and Physical Experiments. Proceedings of the 11th IEEE International Pulsed Power Conference, Baltimore, 29 June-2 July 1997, 765-769.
[26]  Chelpanov, V.I., Dubinov, A.E., Dubinov, E.E. and Babkin, A.L. (1997) In: 1997 IEEE International Pulsed Power Conference, Digest of Technical Papers, Institute of Experimental Physics, Federation Nuclear Centre, Sarov.
[27]  Selivanov, I.A. and Shkvarunets, A.G. (1992) Harmonic Gyro-TWT Amplifier for High Power. In: High-Power Particle Beams, Proceedings of the 9th International Conference on IEEE, Washington DC, 25-29 May 1992.

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413