全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

The Spatial Relativity and Its Physical Consequences

DOI: 10.4236/oalib.1101286, PP. 1-8

Subject Areas: Theoretical Physics

Keywords: Hubble Law, Hubble Radius, Spatial Relativity

Full-Text   Cite this paper   Add to My Lib

Abstract

Through reevaluating the physical significance of Hubble law, we propose the concept of spatial relativity and make two postulates: 1) Distance is equivalent to motion; 2) Hubble radius  is constant. Such an approach can help us to develop the theory of relativity into a unified form, and further construct a simple and consistent cosmological model. It shows that, our universe can be treated as an eternal 3-dimensional ball with an edge never reached served by the physical horizon, whose inherent geometrical property will directly lead to Hubble law, rather than Doppler mechanism. Importantly, the presented model can provide us a unified scheme to deal with the cosmological problems, but without employing more extra assumptions. This will greatly change our understanding of the cosmic spacetime.

Cite this paper

Yao, Q. (2015). The Spatial Relativity and Its Physical Consequences. Open Access Library Journal, 2, e1286. doi: http://dx.doi.org/10.4236/oalib.1101286.

References

[1]  Hubble, E.P. (1929) A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae. Proceedings of the National Academy of Sciences, 15, 169-173.
http://dx.doi.org/10.1073/pnas.15.3.168
[2]  Guth, A.H. (1981) Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Physical Review D, 23, 347.
http://dx.doi.org/10.1103/PhysRevD.23.347
[3]  Linde, A.D. (1982) A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Physics Letters B, 108, 389-393.
http://dx.doi.org/10.1016/0370-2693(82)91219-9
[4]  Albrecht, A. and Steinhardt, P.J. (1982) Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Physical Review Letters, 48, 1220.
http://dx.doi.org/10.1103/PhysRevLett.48.1220
[5]  Steinhardt, P.J. and Turok, N. (2002) A Cyclic Model of the Universe. Science, 296, 1436-1439.
http://dx.doi.org/10.1126/science.1070462
[6]  Ellis, G.F.R. and Rothman, T. (1993) Lost Horizons. American Journal of Physics, 61, 883.
http://dx.doi.org/10.1119/1.17400
[7]  Misner, C.W., Thorne, K.S. and Wheeler, J.A. (1973) Gravitation. Freeman, New York.
[8]  Misner, C.W. (1968) The Isotropy of the Universe. Astrophysical Journal, 151, 431.
http://dx.doi.org/10.1086/149448
[9]  Ellis, G.F.R. (1999) 83 Years of General Relativity and Cosmology: Progress and Problems. Classical and Quantum Gravity, 16, A37.
http://dx.doi.org/10.1088/0264-9381/16/12A/303
[10]  Tegmark, M. (1998) Is “the Theory of Everything” Merely the Ultimate Ensemble Theory? Annals of Physics, 270, 1-51.
http://dx.doi.org/10.1006/aphy.1998.5855
[11]  Bondi, H. and Gold, T. (1948) The Steady State Theory of the Expanding Universe. Proceedings of the Royal Society of London A, 338, 434.
[12]  Bondi, H. (1960) Cosmology. Cambridge University Press, Cambridge.
[13]  Sandage, A., et al. (1996) Cepheid Calibration of the Peak Brightness of Type Ia Supernovae: Calibration of SN 1990N in NGC 4639 Averaged with Six Earlier Type Ia Supernova Calibrations to Give H0 Directly. The Astrophysical Journal, 460, L15-L18.
http://dx.doi.org/10.1086/309973
[14]  Cowie, L.L., Songaila, A., Hu, E.M. and Cohen, J.G. (1996) New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields. The Astronomical Journal, 112, 839.
http://dx.doi.org/10.1086/118058
[15]  Cheng, T.P. (2005) Relativity, Gravitation, and Cosmology. Oxford University Press, Oxford.
[16]  Peebles, P.J.E. (1993) Principles of Physical Cosmology. Princeton University Press, Princeton.
[17]  Garnavich, P.M., Jha, S., Challis, P., Clocchiatti, A., Diercks, A., Filippenko, A.V., et al. (1998) Supernova Limits on the Cosmic Equation of State. The Astrophysical Journal, 509, 74-79.
http://dx.doi.org/10.1086/306495
[18]  Bahcall1, N.A., Ostriker1, J.P., Perlmutter, S. and Steinhardt, P.J. (1999) The Cosmic Triangle: Revealing the State of the Universe. Science, 284, 1481-1488.
http://dx.doi.org/10.1126/science.284.5419.1481
[19]  Broadhurst, T.J., Ellis, R.S. and Shanks, T. (1988) The Durham/Anglo-Australian Telescope Faint Galaxy Redshift Survey. Monthly Notices of the Royal Astronomical Society, 235, 827-856.
http://dx.doi.org/10.1093/mnras/235.3.827
[20]  Broadhurst, T.J., Ellis, R.S. and Glazebrook, K. (1992) Faint Galaxies: Evolution and Cosmological Curvature. Nature, 335, 55-58.
http://dx.doi.org/10.1038/355055a0
[21]  Barnett, R., Carone, C., Groom, D., Trippe, T., Wohl, C., Armstrong, B., et al. (1996) Particle Physics Summary: A Digest of the 1996 Review of Particle Physics. Reviews of Modern Physics, 68, 611-732.
http://dx.doi.org/10.1103/RevModPhys.68.611
[22]  Songaila, A., Cowie, L.L., Vogt, S., Keane, M., Wolfei, A.M., Hu, E.M., et al. (1994) Measurement of the Microwave Background Temperature at a Redshift of 1.776. Nature, 371, 43-45.
http://dx.doi.org/10.1038/371043a0

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413