全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Dark Energy Stars and the Cosmic Microwave Background

DOI: 10.4236/oalib.1101174, PP. 1-7

Subject Areas: Quantum Mechanics, Modern Physics

Keywords: Cosmology, Dark Matter, CMB

Full-Text   Cite this paper   Add to My Lib

Abstract

Cosmological models with a large cosmological constant are unstable due to quantum critical fluctuations at the de Sitter horizon. Due to this instability the space-time in these models will quickly evolve into a Friedmann-like expanding universe containing dark energy stars and radiation. In this paper it is pointed out that this provides a simple explanation for both the observed radiation entropy per gram of dark matter and the level of temperature fluctuations in the cosmic microwave background. A novel prediction is that large dark energy stars provide the seeds for the formation of galaxies.

Cite this paper

Chapline, G. F. (2015). Dark Energy Stars and the Cosmic Microwave Background. Open Access Library Journal, 2, e1174. doi: http://dx.doi.org/10.4236/oalib.1101174.

References

[1]  Lemaitre, G. (1931) A Homogeneous Universe of Constant Mass and Increasing Radius. Monthly Notices of the Royal Astronomical Society, 91, 483-490.
http://dx.doi.org/10.1093/mnras/91.5.483
[2]  Eddington, A.S. (1931) The End of the World from the Standpoint of Mathematical Physics. Nature, 127, 447-453.
http://dx.doi.org/10.1038/127447a0
[3]  Lemaitre, G. (1931) The Beginning of the World from the Point of View of Quantum Theory. Nature, 127, 706.
http://dx.doi.org/10.1038/127706b0
[4]  Chapline, G. (1992) Information Flow in Quantum Mechanics: The Quantum Maxwell Demon. Black, T., et al., Eds., Proceedings of the Santa Fe Conference on the Foundations of Quantum Mechanics, World Scientific, Singapore.
[5]  Chapline, G., Hohfield, E., Laughlin, R.B. and Santiago, D. (2001) Quantum Phase Transitions and the Breakdown of Classical General Relativity. Philosophical Magazine Part B, 81, 235-254.
http://dx.doi.org/10.1080/13642810108221981
[6]  Braunstein, S.L., Pirandola, S. and Zyczkowski, K. (2013) Better Late than Never: Information Retrieval from Black Holes. Physical Review Letters, 110, Article ID: 101301.
http://dx.doi.org/10.1103/PhysRevLett.110.101301
[7]  Chapline, G. (2004) Dark Energy Stars. Proceedings of the Texas Conference on Relativistic Astrophysics, Stanford, 12-17 December 2004.
[8]  Mottola, E. (2010) New Horizons in Gravity: The Trace Anomaly, Dark Energy and Condensate Stars. Acta Physica Polonica, B41, 2031.
[9]  Kolb, E.R. and Turner, M. (1990) The Early Universe. Addison-Wesley, New York.
[10]  Lemaitre, G. (1997) The Expanding Universe. General Relativity and Gravitation, 29, 641-680.
http://dx.doi.org/10.1023/A:1018855621348
[11]  Nauenberg, M. and Chapline, G. (1973) Determination of the Properties of Cold Stars in General Relativity by a Variational Method. The Astrophysical Journal, 179, 277-287.
http://dx.doi.org/10.1086/151868
[12]  Komatsu, E., Dunkley, J., Nolta, M.R., Bennett, C.L., Gold, B., Hinshaw, G., et al. (2009) Five Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation. The Astrophysical Journal Supplement Series, 180, 330-376.
[13]  Chapline, G. (2003) Quantum Phase Transitions and the Failure of General Relativity. International Journal of Modern Physics A, 18, 3587-3590.
http://dx.doi.org/10.1142/S0217751X03016380
[14]  Chapline, G. (1975) Hadron Physics and Primordial Black Holes. Physical Review D, 12, 2949-2954.
http://dx.doi.org/10.1103/PhysRevD.12.2949
[15]  Harrison, E. (1970) Fluctuations at the Threshold of Classical Cosmology. Physical Review D, 1, 2726-2730.
http://dx.doi.org/10.1103/PhysRevD.1.2726
[16]  Zeldovich, Y.B. (1972) A Hypothesis, Unifying the Structure and the Entropy of the Universe. Monthly Notices of the Royal Astronomical Society, 160, 1P-3P.
http://dx.doi.org/10.1093/mnras/160.1.1P
[17]  Peebles, P.J.E. and Yu, J.T. (1970) Primordial Adiabatic Perturbation in an Expanding Universe. The Astrophysical Journal, 162, 815-836.
http://dx.doi.org/10.1086/150713
[18]  Chapline, G. (2009) Dark Energy Stars and AdS/CFT. Proceedings of the 12th Marcel Grossman Meeting, Paris, 12-18 July 2009, 2312-2314.
[19]  Schneider, P., Ehlers, J. and Falco, E.E. (1992) Gravitational Lenses. Springer, Heidelberg.
[20]  Alcock, C., Allen, W.H., Allsman, R.A., Alves, D., Axelrod, T.S., Banks, T.S., et al. (1997) MACHO Alert 95-30: First Real-Time Observation of Extended Source Effects in Gravitational Microlensing. The Astrophysical Journal, 491, 436-450.
http://dx.doi.org/10.1086/304974
[21]  Bennett, C.L., Kogut, A., Hinshaw, G., Banday, A.J., Wright, E.L., Gorski, K.M., et al. (1994) Cosmic Temperature Fluctuations from Two Years of COBE Differential Microwave Radiometers Observations. The Astrophysical Journal, 436, 423-442.
http://dx.doi.org/10.1086/174918
[22]  Blumenthal, G., Faber, S., Primack, J.R. and Rees, M.J. (1984) Formation of Galaxies and Large Scale Structure with Cold Dark Matter. Nature, 311, 517-525.
http://dx.doi.org/10.1038/311517a0
[23]  Feynman, R.P. (2003) Lectures on Gravitation. Westview Press, Boulder, 181-184.
[24]  Khlopov, M.Y., Rubin, S.G. and Sakharov, A. (2002) Strong Primordial Inhomogeneities and Galaxy Formation. Gravitation & Cosmology, 8, 57-65.

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413