Abstract:
Based on the theory of symmetries and conserved quantities of the singular Lagrange system, the perturbations to the symmetries and adiabatic invariants of the singular Lagrange systems are discussed. Firstly, the concept of higher-order adiabatic invariants of the singular Lagrange system is proposed. Then, the conditions for the existence of the exact invariants and adiabatic invariants are proved, and their forms are given. Finally, an example is presented to illustrate these results.

Abstract:
The notion of the characteristic Lie algebra of the discrete hyperbolic type equation is introduced. An effective algorithm to compute the algebra for the equation given is suggested. Examples and further applications are discussed.

Abstract:
A system of first-order differential equations is expressed in the form of first-order Lagrange equations. Based on the theory of symmetries and conserved quantities of first-order Lagrange systems, the perturbation to the symmetries and adiabatic invariants of first-order Lagrange systems are discussed. Firstly, the concept of higher-order adiabatic invariants of the first-order Lagrange system is proposed. Then, conditions for the existence of the exact and adiabatic invariants are proved, and their forms are given. Finally, an example is presented to illustrate these results.

Abstract:
On the basis of the fact that the two-level multiphoton Jaynes－Cummings (TLMJC) model possesses a supersymmetric structure, an invariant is constructed in terms of the supersymmetric generators by working in the sub-Hilbert-space corresponding to a particular eigenvalue of the conserved supersymmetric generators (the time-independent invariant). In this paper, we investigate the invariant-related unitary transformation approach to exact solutions of the time-dependent TLMJC model.

Abstract:
Based on the invariance of differential equations under infinitesimal transformations of group, Lie symmetries, exact invariants, perturbation to the symmetries and adiabatic invariants in form of non-Noether for a Lagrange system are presented. Firstly, the exact invariants of generalized Hojman type led directly by Lie symmetries for a Lagrange system without perturbations are given. Then, on the basis of the concepts of Lie symmetries and higher order adiabatic invariants of a mechanical system, the perturbation of Lie symmetries for the system with the action of small disturbance is investigated, the adiabatic invariants of generalized Hojman type for the system are directly obtained, the conditions for existence of the adiabatic invariants and their forms are proved. Finally an example is presented to illustrate these results.

Abstract:
Based on the theory of symmetries and conserved quantities, the exact invariants and adiabatic invariants of a dynamical system of relative motion are studied. The perturbation to symmetries for the dynamical system of relative motion under small excitation is discussed. The concept of high-order adiabatic invariant is presented, and the form of exact invariants and adiabatic invariants as well as the conditions for their existence are given. Then the corresponding inverse problem is studied.

Abstract:
Based on the theory of Lie symmetries and conserved quantities, the exact invariants and adiabatic invariants of holonomic system are studied in terms of quasi-coordinates. The perturbation to symmetries for the holonomic system in terms of quasi-coordinates under small excitation is discussed. The concept of high-order adiabatic invariant is presented, and the form of exact invariants and adiabatic invariants as well as the conditions for their existence are given. Then the corresponding inverse problem is studied.

Abstract:
There exist a number of typical systems and models which possess the three generator Lie algebraic structure in quantum optics, atomic and molecular physics and condensed matter physics. The present paper obtains exact solutions of these time dependent three generator systems by making use of the Lewis Riesenfeld invariant theory and the invariant related unitary transformation formulation.

Abstract:
We present a class of axially symmetric and stationary spaces foliated by a congruence of surfaces of revolution. The class of solutions considered is that of Carter’s family [A] of spaces and we try to find a solution to Einstein’s equations in the presence of a perfect fluid with heat flux. This approach is an attempt to find an interior solution that could be matched to a corresponding exterior solution across a surface of zero hydrostatic pressure. The presence of a congruence of surfaces of revolution, described as the quotient space of the commoving observers, can be useful to the determination of the surface of zero pressure. Finally we present two formal solutions representing ellipsoids of revolutions.