Abstract:
D-Xylitol is found in low content as a natural constituent of many fruits and vegetables. It is a five-carbon sugar polyol and has been used as a food additive and sweetening agent to replace sucrose, especially for non-insulin dependent diabetics. It has multiple beneficial health effects, such as the prevention of dental caries, and acute otitis media. In industry, it has been produced by chemical reduction of D-xylose mainly from photosynthetic biomass hydrolysates. As an alternative method of chemical reduction, biosynthesis of D-xylitol has been focused on the metabolically engineered Saccharomyces cerevisiae and Candida strains. In order to detect D-xylitol in the production processes, several detection methods have been established, such as gas chromatography (GC)-based methods, high performance liquid chromatography (HPLC)-based methods, LC-MS methods, and capillary electrophoresis methods (CE). The advantages and disadvantages of these methods are compared in this review.

Abstract:
The paper discusses the affection of the scalar potential on the speed of light in the electromagnetic field, by means of the characteristics of octonion. In the octonion space, the radius vector is combined with the integral of field potentials to become one new radius vector. When the field potentials can not be neglected, the new radius vector will cause the prediction to departure slightly from the theoretical value of the speed of light. The results explain why the speed of light varies in diversiform optical waveguide. And there exist negative refractive indexes due to different scalar potentials in the gravitational field and electromagnetic field.

Abstract:
The paper studies the inferences of wave equations for electromagnetic fields when there are gravitational fields at the same time. In the description with the algebra of octonions, the inferences of wave equations are identical with that in conventional electromagnetic theory with vector terminology. By means of the octonion exponential function, we can draw out that the electromagnetic waves are transverse waves in a vacuum, and rephrase the law of reflection, Snell's law, Fresnel formula, and total internal reflection etc. The study claims that the theoretical results of wave equations for electromagnetic strength keep unchanged in the case for coexistence of gravitational and electromagnetic fields. Meanwhile the electric and magnetic components of electromagnetic waves can not be determined simultaneously in electromagnetic fields.

Abstract:
Making use of the octonion operator, the electromagnetic field generates an adjoint field theoretically. The source of adjoint field includes the adjoint charge and the adjoint current. The adjoint charge has an impact on the gravitational mass and the mass distribution in the electromagnetic field with its adjoint field, and causes further the predictions to departure slightly from the conservation of mass. The inferences can explain why the adjoint charge will influence the mass distribution in the gravitational field and electromagnetic field of celestial bodies. And then the adjoint charge can be considered as one kind of candidate for the dark matter.

Abstract:
The paper aims to adopt the complex quaternion and octonion to formulate the field equations for electromagnetic and gravitational fields. Applying the octonionic representation enables one single definition to combine some physics contents of two fields, which were considered to be independent of each other in the past. J. C. Maxwell applied simultaneously the vector terminology and the quaternion analysis to depict the electromagnetic theory. This method edified the paper to introduce the quaternion and octonion spaces into the field theory, in order to describe the physical feature of electromagnetic and gravitational fields, while their coordinates are able to be the complex number. The octonion space can be separated into two subspaces, the quaternion space and the S-quaternion space. In the quaternion space, it is able to infer the field potential, field strength, field source, field equations, and so forth, in the gravitational field. In the S-quaternion space, it is able to deduce the field potential, field strength, field source, and so forth, in the electromagnetic field. The results reveal that the quaternion space is appropriate to describe the gravitational features; meanwhile the S-quaternion space is proper to depict the electromagnetic features.

Abstract:
The paper aims to consider the strength gradient force as the dynamic of astrophysical jets, explaining the movement phenomena of astrophysical jets. J. C. Maxwell applied the quaternion analysis to describe the electromagnetic theory. This encourages others to adopt the complex quaternion and octonion to depict the electromagnetic and gravitational theories. In the complex octonion space, it is capable of deducing the field potential, field strength, field source, angular momentum, torque, force and so forth. As one component of the force, the strength gradient force relates to the gradient of the norm of field strength only, and is independent of not only the direction of field strength but also the mass and electric charge for the test particle. When the strength gradient force is considered as the thrust of the astrophysical jets, one can deduce some movement features of astrophysical jets, including the bipolarity, matter ingredient, precession, symmetric distribution, emitting, collimation, stability, continuing acceleration and so forth. The above results reveal that the strength gradient force is able to be applied to explain the main mechanical features of astrophysical jets, and is the competitive candidate of the dynamic of astrophysical jets.

Abstract:
The magneto-optic effects and electro-optic effects are the essential optic effects, although their theoretical explanations are not unified in the classical electromagnetic theory. Describing with the algebra of octonions, the electromagnetic theory can derive the magneto-optic effects and electro-optic effects from the same one force definition in the paper. As well as the magneto-optic effect is deduced from the known force term, the electro-optic effect is from the new force term in the octonion space. This description method is different to that in the quantum theory as well as the index ellipsoid approach for the electro-optic effect. One more significant inference is that the gravitational field has an impact on the rotation of linearly polarized light, and then results in the similar birefringence for the transmitted light in the cosmic matter.

Abstract:
The paper aims to adopt the complex octonion to formulate the angular momentum, torque, and force etc in the electromagnetic and gravitational fields. Applying the octonionic representation enables one single definition of angular momentum (or torque, force) to combine some physics contents, which were considered to be independent of each other in the past. J. C. Maxwell used simultaneously two methods, the vector terminology and quaternion analysis, to depict the electromagnetic theory. It motivates the paper to introduce the quaternion space into the field theory, describing the physical feature of electromagnetic and gravitational fields. The spaces of two fields can be chosen as the quaternion spaces, while the coordinate component of quaternion space is able to be the complex number. The quaternion space of electromagnetic field is independent of that of gravitational field. These two quaternion spaces may compose one octonion space. Contrarily, one octonion space can be separated into two subspaces, the quaternion space and S-quaternion space. In the quaternion space, it is able to infer the field potential, field strength, field source, angular momentum, torque, and force etc in the gravitational field. In the S-quaternion space, it is capable of deducing the field potential, field strength, field source, current continuity equation, and electric (or magnetic) dipolar moment etc in the electromagnetic field. The results reveal that the quaternion space is appropriate to describe the gravitational features, including the torque, force, and mass continuity equation etc. The S-quaternion space is proper to depict the electromagnetic features, including the dipolar moment and current continuity equation etc. In case the field strength is weak enough, the force and the continuity equation etc can be respectively reduced to that in the classical field theory.

Abstract:
The paper investigates the influences of the helicity on the gravitational mass density, the field source, the charge continuity equation, and the mass continuity equation etc in the electromagnetic field and gravitational field. By means of the algebra of octonions, the magnetic helicity, the current helicity, the cross helicity, the kinetic helicity, the field energy, the enstrophy, and some new helicity terms can be derived from the octonion definitions of the linear mentum and the force in some field descriptions with different operators. The study claims that the gravitational mass density, the field source, the charge continuity equation, and the mass continuity equation will be impacted by the helicity, the field strength, and the vorticity of the rotational objects and of the spinning charged objects in the gravitational field and the electromagnetic field with their adjoint fields.

Abstract:
A series of 4 β-triazole-linked glucose podophyllotoxin conjugates have been designed and synthesized by employing a click chemistry approach. All the compounds were evaluated for their anticancer activity against a panel of five human cancer cell lines (HL-60, SMMC-7721, A-549, MCF-7, SW480) using MTT assays. Most of these triazole derivatives have good anticancer activity. Among them, compound 35 showed the highest potency against all five cancer cell lines tested, with IC 50 values ranging from 0.59 to 2.90 μM, which is significantly more active than the drug etoposide currently in clinical use. Structure-activity relationship analysis reveals that the acyl substitution on the glucose residue, the length of oligoethylene glycol linker, and the 4'-demethylation of podophyllotoxin scaffold can significantly affect the potency of the anticancer activity. Most notably, derivatives with a perbutyrylated glucose residue show much higher activity than their counterparts with either a free glucose or a peracetylated glucose residue.