Abstract:
Esophageal squamous cell carcinoma (ESCC) is a prevalent and fatal cancer in China and other Asian countries. Epigenetic silencing of key tumor suppressor genes (TSGs) is critical to ESCC initiation and progression. Recently, many novel TSGs silenced by promoter methylation have been identified in ESCC, and these genes further serve as potential tumor markers for high-risk group stratification, early detection, and prognosis prediction. This review summarizes recent discoveries on aberrant promoter methylation of TSGs in ESCC, providing better understanding of the role of disrupted epigenetic regulation in tumorigenesis and insight into diagnostic and prognostic biomarkers for this malignancy.

Abstract:
A class of new generalized orthogonality of quasiBanach spaces is given in this paper. It is a generalization of orthogonality. First, the relation of orthogonality and linear functional are introduced. At the same time, a necessary and sufficient condition of orthogonality in quasiBanach spaces is given. Namely, let X be a quasiBanach spaces on * is equivalent to x⊥H. The sufficient conditions of rightexistence and leftexistence of orthogonality are discussed. Finally, two examples which show that rightexistence of orthogonality in quasiBanach spaces does not exist for all elements are given.(* Indicates a formula, please see the full text)

Abstract:
The structure of vortices in Bose-Einstein condensed atomic gases is studied taking into account many-body correlation effects. It is shown that for excited vortices the particle density in the vortex core increases as the angular momentum of the system increases. The core density can increase by several times with only a few percent change in the angular momentum. This result provides an explanation for the observations in which the measured angular momentum is higher than the estimation based on counting the number of vortices, and the visibility of the vortex cores is simultaneously reduced. The calculated density profiles for the excited vortices are in good agreement with experimental measurements.

Abstract:
In two dimensions a microscopic theory providing a basis for the naive analogy between a quantized vortex in a superfluid and an electron in a uniform magnetic field is presented. Following the variational approach developed by Peierls, Yoccoz, and Thouless, the cyclotron motion of a vortex is described by the many-body wave function, which is a linear combination of Feynman wave functions centered at different positions. An integral equation for the weighting functions of the superposition is derived by minimizing the energy functional. The matrix elements of the kernel are the overlaps between any two displaced Feynman wave functions. A numerical study is conducted for a bosonic superfluid based on a Hartree ground state. A one-to-one correspondence between the rotational states of a vortex in a cylinder and the cyclotron states of an electron in the central gauge is found. Like the Landau levels of an electron, the energy levels of a vortex are highly degenerate. However, the gap between two adjacent energy levels does not only depend on the quantized circulation, but also increases with energy, and scales with the size of the vortex. The fluid density is finite at the vortex axis and the vorticity is distributed in the core region. The effective mass of a quantized vortex defined by the inverse of the energy-level spacing is shown to be logarithmically divergent with the size of the vortex.

Abstract:
In two dimensions the microscopic theory, which provides a basis for the naive analogy between a quantized vortex in a superfluid and an electron in an uniform magnetic field, is presented. A one-to-one correspondence between the rotational states of a vortex in a cylinder and the cyclotron states of an electron in the central gauge is found. Like the Landau levels of an electron, the energy levels of a vortex are highly degenerate. However, the gap between two adjacent energy levels does not only depend on the quantized circulation, but also increases with the energy, and scales with the size of the vortex.

Abstract:
The structure of a quantized vortex in a Bose-Einstein Condensate is investigated using the projection method developed by Peierls, Yoccoz, and Thouless. This method was invented to describe the collective motion of a many-body system beyond the mean-field approximation. The quantum fluctuation has been properly built into the variational wave function, and a vortex is described by a linear combination of Feynman wave functions weighted by a Gaussian distribution in their positions. In contrast to the solution of the Gross-Pitaevskii equation, the particle density is finite at the vortex axis and the vorticity is distributed in the core region.

Abstract:
This paper demonstrates the relativity of Computability and Nondeterministic; the nondeterministic is just Turing's undecidable Decision rather than the Nondeterministic Polynomial time. Based on analysis about TM, UM, DTM, NTM, Turing Reducible, beta-reduction, P-reducible, isomorph, tautology, semi-decidable, checking relation, the oracle and NP-completeness, etc., it reinterprets The Church-Turing Thesis that is equivalent of the Polynomial time and actual time; it redefines the NTM based on its undecidable set of its internal state. It comes to the conclusions: The P-reducible is misdirected from the Turing Reducible with its oracle; The NP-completeness is a reversal to The Church-Turing Thesis; The Cook-Levin theorem is an equipollent of two uncertains. This paper brings forth new concepts: NP (nondeterministic problem) and NP-algorithm (defined as the optimal algorithm to get the best fit approximation value of NP). P versus NP is the relativity of Computability and Nondeterministic, P/=NP. The NP-algorithm is effective approximate way to NP by TM.

Abstract:
Heavy metal pollution has received increasing attention in recent years mainly because of the public awareness of environmental issues. In this study we have evaluated the effect of cadmium (Cd) on enzymes activity, substrate utilization pattern and diversity of microbial communities in soil spiked with 0, 20, 40, 60, 80, and 100 mg/kg Cd, during 60 d of incubation at 25 degrees C. Enzyme activities determined at 0, 15, 30, 45, and 60 d after heavy metal application (DAA) showed marked declines for various Cd treatments, and up to 60 DAA, 100 mg/kg Cd resulted in 50.1%, 47.4%, and 39.8% decreases in soil urease, acid phosphatase and dehydrogenase activities, respectively to control. At 60 DAA, substrate utilization pattern of soil microbial communities determined by inoculating Biolog ECO plates indicated that Cd addition had markedly inhibited the functional activity of soil microbial communities and multivariate analysis of sole carbon source utilization showed significantly different utilization patterns for 80 and 100 mg/kg Cd treatments. The structural diversity of soil microbial communities assessed by PCR-DGGE method at 60 DAA, illustrated that DGGE patterns in soil simplified with increasing Cd concentration, and clustering of DGGE profiles for various Cd treatments revealed that they had more than 50% difference with that of control.

Abstract:
The optimial fare structure for public transport networks with elastic demand is discussed with the assumption of fixed transit service frequency.Because the transit fare structure has significant effects on the passengers' demand and route choice behavior,a bilevel programming method is developed to determine the optimal fare structure for the transit operator with taking into account the passengers' response.The upper level problem seeks to maximize the operator's revenue,while the lower level problem is a stochastic user equilibrium transit assignment model with elastic demand.Since the bilevel problem is nonconvex,a heuristic solution algorithm based on sensitivity analysis is proposed.Finally,a numerical example is given to illustrate the proposed model and algorithm.