oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2019 ( 238 )

2018 ( 1994 )

2017 ( 1913 )

2016 ( 1957 )

Custom range...

Search Results: 1 - 10 of 131785 matches for " Wang Ji-Suo "
All listed articles are free for downloading (OA Articles)
Page 1 /131785
Display every page Item
MATHEMATICAL STRUCTURE OF THE EIGENSTATES OF OPERATOR ak AND THEIR PROPERTIES
光子消灭算符高次幂本征态的数学结构及其性质

WANG JI-SUO,
王继锁

物理学报 , 1991,
Abstract: 本文在文献1]的基础上研究了光子消灭算符高次幂αk(k≥3)的正交归一本征态的数学和量子统计性质,指出这些本征态均具有非经典效应,它们组成一个以非经典光场态作基矢的完备表象。在此之前,文献1]讨论的k=3的情况只是我们所得普遍性结论的特例。
Wigner functions and tomograms of the photon-depleted even and odd coherent states

Wang Ji-Suo,Meng Xiang-Guo,

中国物理 B , 2008,
Abstract: Using the coherent state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, this paper derives the Wigner functions for the photon-depleted even and odd coherent states (PDEOCSs). Moreover, in terms of the Wigner functions with respect to the complex parameter $\alpha $ the nonclassical properties of the PDEOCSs are discussed. The results show that the nonclassicality for the state $\left| {\beta ,m} \right\rangle _{\rm o} $ (or $\left| {\beta ,m} \right\rangle _{\rm e} )$ is more pronounced when $m$ is even (or odd). According to the marginal distributions of the Wigner functions, the physical meaning of the Wigner functions is given. Further, the tomograms of the PDEOCSs are calculated with the aid of newly introduced intermediate coordinate-momentum representation in quantum optics.
QUANTUM FLUCTUATION OF MESOSCOPIC CIRCUIT IN SQUEEZED VACUUM STATE
压缩真空态下介观电路的量子涨落

WANG JI-SUO,SUN CHANG-YONG,
王继锁
,孙长勇

物理学报 , 1997,
Abstract: Starting from equation of motion of an active LC circuit,the quantum fluctuations of the charge and current in the mesoscopic circuit (LC circuit) in the squeezed vacuum state are investigated.
Entangled coherent states in symmetry phase spaceand their nonclassical effects
相空间中对称的纠缠相干态及其非经典特性

Zhang Xiao-Yan,Wang Ji-Suo,
张晓燕
,王继锁

物理学报 , 2011,
Abstract: We discuss the entangled coherent states in symmetry phase space by introducing orthogonal basis, calculate their entanglement by means of concurrence, and investigate their squeezing effects of single-mode and two-mode and antibunching effects. The calculations indicate that the entangled coherent state in symmetry phase space is closely related to nonclassical effect.
New even and odd nonlinear coherent states and their non-classical properties
新的奇偶非线性相干态及其非经典性质

Meng Xiang-Guo,Wang Ji-Suo,
孟祥国
,王继锁

物理学报 , 2007,
Abstract: 构造出了一种新的奇偶非线性相干态, 并借助于数值计算方法研究了它们的压缩、振幅平方压缩、反聚束和相位概率分布等非经典性质. 结果表明, 与通常的奇偶相干态和非线性奇偶相干态不同, 在参数|λ|的不同取值范围内, 新的奇偶非线性相干态在Y1和Y2两个方向均可呈现振幅平方压缩效应, 而压缩效应仅在偶非线性相干态的X2方向上呈现, 反聚束效应仅在奇非线性相干态中呈现. 另外, 通过研究新的奇偶非线性相干态相位概率分布, 发现新的奇偶非线性相干态具有完全不同的量子干涉特性.
Amplitude-squared squeezing of Roy-type even and odd nonlinear coherent states in a finite-dimensional Hilbert space
有限维Hilbert空间Roy型奇偶非线性相干态的振幅平方压缩

Meng Xiang-Guo,Wang Ji-Suo,
孟祥国
,王继锁

物理学报 , 2006,
Abstract: 构造出了有限维Hilbert空间Roy型奇偶非线性相干态, 讨论了它们的正交归一完备性和振幅平方压缩效应. 研究表明, 在此空间中Roy型奇偶非线性相干态是归一完备的, 但不具有正交性; 当复参数相位角θ满足一定条件时它们存在振幅平方压缩效应, 同时导出了压缩条件与参数s,r以及函数f(n)之间的关系. 最后借助于数值计算, 发现对于5维(或7维)Hilbert空间中Roy型偶(或奇)非线性相干态, 当参数θ和Lamb-Dike参数η取某一给定值时, 在参数r变化的不同取值范围内, 它们均可以呈现振幅平方
Some nonclassical properties of a finite dimensional even and odd pair coherent state
有限维奇偶对相干态的非经典性质

Meng Xiang-Guo,Wang Ji-Suo,
孟祥国
,王继锁

物理学报 , 2007,
Abstract: 构造出了奇偶对相干态的指数形式, 并把奇偶对相干态推广至有限维Hilbert空间, 获得了有限维奇偶对相干态, 然后讨论了它们的正交归一完备性、反聚束效应和相位概率分布. 结果表明, 在此空间中奇偶对相干态具有归一完备性, 但不具有正交性. 借助于数值计算发现, 无论q取何值, 在参数|ξ|的不同取值范围内, 对于5维Hilbert空间中奇偶对相干态在模1和模2两个方向上均可呈现反聚束效应, 并且此双模光场的光子均是相关的. 而在7维Hilbert空间中,奇偶对相干态相位概率分
Modified Josephson Equation for Mesoscopic Parallel LC Circuit Including a Josephson Junction

SU Jie,WANG Ji-Suo,LIANG Bao-Long,ZHANG Xiao-Yan,

中国物理快报 , 2009,
Abstract: By introducing the entangled state representation, the Cooper-pair number-phase quantization of the mesoscopic parallel LC circuit including a Josephson junction is realized. In the Heisenberg picture, the modified Josephson equation associated with the modification of the Faraday equation about the inductance is deduced from the motion equation.
Cooper-Pair Number--Phase Quantization for Inductance Coupling Circuit Including Josephson Junctions

MENG Xiang-Guo,WANG Ji-Suo,LIANG Bao-Long,

中国物理快报 , 2008,
Abstract: Based on the entangled state representation and a bosonic phase operator formalism, we tackle with Cooper-pair number--phase quantization for the inductance coupling circuit including Josephson junctions, and then investigate how Josephson current equations change due to the presence of the coupling inductance and obtain bosonic operator Faraday formula, as well as the corresponding number--phase uncertainty relation.
Number-Phase Quantization and Deriving Energy-Level Gap of Two LC Circuits with Mutual-Inductance

MENG Xiang-Guo,WANG Ji-Suo,ZHAI Yun,FAN Hong-Yi,

中国物理快报 , 2008,
Abstract: For two LC circuits with mutual-inductance, we introduce a new quantization scheme in the context of number-phase quantization through the standard Lagrangian formalism. The commutative relation between the charge operator and the magnetic flux operator is derived. Then we use the Heisenbergequation of motion to obtain the current and voltage equation across the inductance and capacity. The results clearly show how the current and voltage in a single LC circuit are affected by the circuit parameters and inductance coupling coefficient. In addition, adopting invariant eigen-operator method the energy-level gap of the dynamic Hamiltonian which describes two LC circuits with mutual-inductance is obtained.
Page 1 /131785
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.