oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2020 ( 1 )

2019 ( 26 )

2018 ( 39 )

2017 ( 26 )

Custom range...

Search Results: 1 - 10 of 22294 matches for " Wandosell Francisco "
All listed articles are free for downloading (OA Articles)
Page 1 /22294
Display every page Item
Deconstructing GSK-3: The Fine Regulation of Its Activity
Miguel Medina,Francisco Wandosell
International Journal of Alzheimer's Disease , 2011, DOI: 10.4061/2011/479249
Abstract: Glycogen synthase kinase-3 (GSK-3) unique position in modulating the function of a diverse series of proteins in combination with its association with a wide variety of human disorders has attracted significant attention to the protein both as a therapeutic target and as a means to understand the molecular basis of these disorders. GSK-3 is ubiquitously expressed and, unusually, constitutively active in resting, unstimulated cells. In mammals, GSK-3α and β are each expressed widely at both the RNA and protein levels although some tissues show preferential levels of some of the two proteins. Neither gene appears to be acutely regulated at the transcriptional level, whereas the proteins are controlled posttranslationally, largely through protein-protein interactions or by posttranslational regulation. Control of GSK-3 activity thus occurs by complex mechanisms that are each dependent upon specific signalling pathways. Furthermore, GSK-3 appears to be a cellular nexus, integrating several signalling systems, including several second messengers and a wide selection of cellular stimulants. This paper will focus on the different ways to control GSK-3 activity (phosphorylation, protein complex formation, truncation, subcellular localization, etc.), the main signalling pathways involved in its control, and its pathological deregulation. 1. Introduction Glycogen synthase kinase-3 (GSK-3) is a CMGC serine/threonine protein kinase initially described as one of the kinases that phosphorylates and inhibits glycogen synthase [1]. It is now widely accepted though that GSK-3 plays an important role in various essential physiological processes, such as development, cell cycle, or apoptosis [2]. Apart from glycogen synthase, a plethora of different substrates has been identified in all cellular compartments, that is, metabolic proteins [3], cytoskeletal proteins [4], and transduction [5] and transcription factors [6] (see Table 1). Table 1: GSK-3 substrates. In neuronal development, GSK-3 has been reported to control morphogenesis and axonal polarity [7], synaptogenesis [8], and survival [9, 10]. In addition, GSK-3 dysfunction has been associated with brain pathological conditions, such as Alzheimer’s disease (AD) [11, 12] or prion neurotoxicity [13]. Thus, the deep knowledge of the role of both GSK-3 isoforms in brain metabolism will allow us to understand their contribution to neurodegenerative processes. GSK-3 unique position in modulating the function of a diverse series of proteins in combination with its association with a wide variety of human disorders has
Modulation of GSK-3 as a Therapeutic Strategy on Tau Pathologies
Miguel Medina,Francisco G. Wandosell
Frontiers in Molecular Neuroscience , 2011, DOI: 10.3389/fnmol.2011.00024
Abstract: Glycogen synthase kinase-3 (GSK-3) is ubiquitously expressed and unusually active in resting, non-stimulated cells. In mammals, at least three proteins (α, β1, and β2), generated from two different genes, gsk-3α and gsk-3β, are widely expressed at both the RNA and protein levels although some tissues show preferential expression of some of the three proteins. Control of GSK-3 activity occurs by complex mechanisms that depend on specific signaling pathways, often controlling the inhibition of the kinase activity. GSK-3 appears to integrate different signaling pathways from a wide selection of cellular stimuli. The unique position of GSK-3 in modulating the function of a diverse series of proteins and its association with a wide variety of human disorders has attracted significant attention as a therapeutic target and as a means to understand the molecular basis of brain disorders. Different neurodegenerative diseases including frontotemporal dementia, progressive supranuclear palsy, and Alzheimer’s disease, present prominent tau pathology such as tau hyperphosphorylation and aggregation and are collectively referred to as tauopathies. GSK-3 has also been associated to different neuropsychiatric disorders, like schizophrenia and bipolar disorder. GSK-3β is the major kinase to phosphorylate tau both in vitro and in vivo and has been proposed as a target for therapeutic intervention. The first therapeutic strategy to modulate GSK-3 activity was the direct inhibition of its kinase activity. This review will focus on the signaling pathways involved in the control of GSK-3 activity and its pathological deregulation. We will highlight different alternatives of GSK-3 modulation including the direct pharmacological inhibition as compared to the modulation by upstream regulators.
Specific Roles of Akt iso Forms in Apoptosis and Axon Growth Regulation in Neurons
Hector Diez, Juan Jose Garrido, Francisco Wandosell
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0032715
Abstract: Akt is a member of the AGC kinase family and consists of three isoforms. As one of the major regulators of the class I PI3 kinase pathway, it has a key role in the control of cell metabolism, growth, and survival. Although it has been extensively studied in the nervous system, we have only a faint knowledge of the specific role of each isoform in differentiated neurons. Here, we have used both cortical and hippocampal neuronal cultures to analyse their function. We characterized the expression and function of Akt isoforms, and some of their substrates along different stages of neuronal development using a specific shRNA approach to elucidate the involvement of each isoform in neuron viability, axon development, and cell signalling. Our results suggest that three Akt isoforms show substantial compensation in many processes. However, the disruption of Akt2 and Akt3 significantly reduced neuron viability and axon length. These changes correlated with a tendency to increase in active caspase 3 and a decrease in the phosphorylation of some elements of the mTORC1 pathway. Indeed, the decrease of Akt2 and more evident the inhibition of Akt3 reduced the expression and phosphorylation of S6. All these data indicate that Akt2 and Akt3 specifically regulate some aspects of apoptosis and cell growth in cultured neurons and may contribute to the understanding of mechanisms of neuron death and pathologies that show deregulated growth.
Impaired Function of HDAC6 Slows Down Axonal Growth and Interferes with Axon Initial Segment Development
Mónica Tapia,Francisco Wandosell,Juan José Garrido
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0012908
Abstract: The development of morphological neuronal polarity starts by the formation and elongation of an axon. At the same time the axon initial segment (AIS) is generated and creates a diffusion barrier which differentiate axon and somatodendritic compartment. Different structural and functional proteins that contribute to the generation of neuronal action potential are concentrated at the axon initial segment. While axonal elongation is controlled by signalling pathways that regulate cytoskeleton through microtubule associated proteins and tubulin modifications, the microtubule cytoskeleton under the AIS is mostly unknown. Thus, understanding which proteins modify tubulin, where in the neuron and at which developmental stage is crucial to understanding how morphological and functional neuronal polarity is achieved. In this study performed in mice and using a well established model of murine cultured hippocampal neurons, we report that the tubulin deacetylase HDAC6 is localized at the distal region of the axon, and its inhibition with TSA or tubacin slows down axonal growth. Suppression of HDAC6 expression with HDAC6 shRNAs or expression of a non-active mutant of HDAC6 also reduces axonal length. Furthermore, HDAC6 inhibition or suppression avoids the concentration of ankyrinG and sodium channels at the axon initial segment (AIS). Moreover, treatment of mouse cultured hippocampal neurons with detergents to eliminate the soluble pool of microtubules identified a pool of detergent resistant acetylated microtubules at the AIS, not present at the rest of the axon. Inhibition or suppression of HDAC6 increases acetylation all along the axon and disrupts the specificity of AIS cytoskeleton, modifying the axonal distal gradient localization of KIF5C to a somatodendritic and axonal localization. In conclusion, our results reveal a new role of HDAC6 tubulin deacetylase as a regulator of microtubule characteristics in the axon distal region where axonal elongation takes place, and allowing the development of acetylated microtubules microdomains where HDAC6 is not concentrated, such as the axon initial segment.
Neuronal and glial purinergic receptors functions in neuron development and brain disease
Ana del Puerto,Francisco Wandosell,Juan José Garrido
Frontiers in Cellular Neuroscience , 2013, DOI: 10.3389/fncel.2013.00197
Abstract: Brain development requires the interaction of complex signaling pathways, involving different cell types and molecules. For a long time, most attention has focused on neurons in a neuronocentric conceptualization of central nervous system development, these cells fulfilling an intrinsic program that establishes the brain’s morphology and function. By contrast, glia have mainly been studied as support cells, offering guidance or as the cells that react to brain injury. However, new evidence is appearing that demonstrates a more fundamental role of glial cells in the control of different aspects of neuronal development and function, events in which the influence of neurons is at best weak. Moreover, it is becoming clear that the function and organization of the nervous system depends heavily on reciprocal neuron–glia interactions. During development, neurons are often generated far from their final destination and while intrinsic mechanisms are responsible for neuronal migration and growth, they need support and regulatory influences from glial cells in order to migrate correctly. Similarly, the axons emitted by neurons often have to reach faraway targets and in this sense, glia help define the way that axons grow. Moreover, oligodendrocytes and Schwann cells ultimately envelop axons, contributing to the generation of nodes of Ranvier. Finally, recent publications show that astrocytes contribute to the modulation of synaptic transmission. In this sense, purinergic receptors are expressed widely by glial cells and neurons, and recent evidence points to multiple roles of purines and purinergic receptors in neuronal development and function, from neurogenesis to axon growth and functional axonal maturation, as well as in pathological conditions in the brain. This review will focus on the role of glial and neuronal secreted purines, and on the purinergic receptors, fundamentally in the control of neuronal development and function, as well as in diseases of the nervous system.
Olfactory Ensheathing Glia: Drivers of Axonal Regeneration in the Central Nervous System?
M. Teresa Moreno-Flores,Javier Díaz-Nido,Francisco Wandosell,Jesús Avila
Journal of Biomedicine and Biotechnology , 2002, DOI: 10.1155/s1110724302000372
Abstract: Olfactory ensheathing glia (OEG) accompany olfactory growing axons in their entry to the adult mammalian central nervous system (CNS). Due to this special characteristic, considerable attention has been focused on the possibility of using OEG for CNS regeneration. OEG present a large heterogeneity in culture with respect to their cellular morphology and expressed molecules. The specific characteristics of OEG responsible for their regenerative properties have to be defined. These properties probably result from the combination of several factors: molecular composition of the membrane (expressing adhesion molecules as PSA-NCAM, L1 and/or others) combined with their ability to reduce glial scarring and to accompany new growing axons into the host CNS. Their capacity to produce some neurotrophic factors might also account for their ability to produce CNS regeneration.
Estradiol Activates β-Catenin Dependent Transcription in Neurons
Olga Varea, Juan Jose Garrido, Ana Dopazo, Pablo Mendez, Luis Miguel Garcia-Segura, Francisco Wandosell
PLOS ONE , 2009, DOI: 10.1371/journal.pone.0005153
Abstract: Estradiol may fulfill a plethora of functions in neurons, in which much of its activity is associated with its capacity to directly bind and dimerize estrogen receptors. This hormone-protein complex can either bind directly to estrogen response elements (ERE's) in gene promoters, or it may act as a cofactor at non-ERE sites interacting with other DNA-binding elements such as AP-1 or c-Jun. Many of the neuroprotective effects described for estrogen have been associated with this mode of action. However, recent evidence suggests that in addition to these “genomic effects”, estrogen may also act as a more general “trophic factor” triggering cytoplasmic signals and extending the potential activity of this hormone. We demonstrated that estrogen receptor alpha associates with β-catenin and glycogen synthase kinase 3 in the brain and in neurons, which has since been confirmed by others. Here, we show that the action of estradiol activates β-catenin transcription in neuroblastoma cells and in primary cortical neurons. This activation is time and concentration-dependent, and it may be abolished by the estrogen receptor antagonist ICI 182780. The transcriptional activation of β-catenin is dependent on lymphoid enhancer binding factor-1 (LEF-1) and a truncated-mutant of LEF-1 almost completely blocks estradiol TCF-mediated transcription. Transcription of a TCF-reporter in a transgenic mouse model is enhanced by estradiol in a similar fashion to that produced by Wnt3a. In addition, activation of a luciferase reporter driven by the engrailed promoter with three LEF-1 repeats was mediated by estradiol. We established a cell line that constitutively expresses a dominant-negative LEF-1 and it was used in a gene expression microarray analysis. In this way, genes that respond to estradiol or Wnt3a, sensitive to LEF-1, could be identified and validated. Together, these data demonstrate the existence of a new signaling pathway controlled by estradiol in neurons. This pathway shares some elements of the insulin-like growth factor-1/Insulin and Wnt signaling pathways, however, our data strongly suggest that it is different from that of both these ligands. These findings may reveal a set of new physiological roles for estrogens, at least in the Central Nervous System (CNS).
Post-ischemic estradiol treatment reduced glial response and triggers distinct cortical and hippocampal signaling in a rat model of cerebral ischemia
Maria Jose Perez Alvarez, Maria del Carmen Maza, Marta Anton, Lara Ordo?ez, Francisco Wandosell
Journal of Neuroinflammation , 2012, DOI: 10.1186/1742-2094-9-157
Abstract: Male rats were subjected to pMCAO and estradiol (0.04?mg/kg) was administered 6, 24, and 48?h after surgery. The animals were sacrificed 6?h after the last treatment, and brain damage was evaluated by immunohistochemical quantification of ‘reactive gliosis’ using antibodies against GFAP and Iba1. In addition, Akt, phospho-AktSer473, phospho-AktThr308, GSK3, phospho-GSK3Ser21/9, β-catenin, SAPK-JNK, and pSAPK-JNKThr183/Tyr185 levels were determined in western blots of the ipsilateral cerebral cortex and hippocampus, and regional differences in neuronal phospho-Akt expression were determined by immunohistochemistry.The increases in the percentage of GFAP- (5.25-fold) and Iba1- (1.8-fold) labeled cells in the cortex and hippocampus indicate that pMCAO induced ‘reactive gliosis’. This effect was prevented by post-ischemic estradiol treatment; diminished the number of these cells to those comparable with control animals. pMCAO down-regulated the PI3K/AkT/GSK3/β-catenin survival pathway to different extents in the cortex and hippocampus, the activity of which was restored by estradiol treatment more efficiently in the cerebral cortex (the most affected region) than in the hippocampus. No changes in the phosphorylation of SAPK-JNK were observed 54?h after inducing pMCAO, whereas pMCAO did significantly decrease the phospho-AktSer473 in neurons, an effect that was reversed by estradiol.The present study demonstrates that post-pMCAO estradiol treatment attenuates ischemic injury in both neurons and glia, events in which the PI3K/AKT/GSK3/β-catenin pathway is at least partly involved. These findings indicate that estradiol is a potentially useful treatment to enhance recovery after human ischemic stroke.
Olfactory Ensheathing Glia: Drivers of Axonal Regeneration in the Central Nervous System?
Moreno-Flores M. Teresa,Díaz-Nido Javier,Wandosell Francisco,Avila Jesús
Journal of Biomedicine and Biotechnology , 2002,
Abstract: Olfactory ensheathing glia (OEG) accompany olfactory growing axons in their entry to the adult mammalian central nervous system (CNS). Due to this special characteristic, considerable attention has been focused on the possibility of using OEG for CNS regeneration. OEG present a large heterogeneity in culture with respect to their cellular morphology and expressed molecules. The specific characteristics of OEG responsible for their regenerative properties have to be defined. These properties probably result from the combination of several factors: molecular composition of the membrane (expressing adhesion molecules as PSA-NCAM, L1 and/or others) combined with their ability to reduce glial scarring and to accompany new growing axons into the host CNS. Their capacity to produce some neurotrophic factors might also account for their ability to produce CNS regeneration.
WIP Regulates Persistence of Cell Migration and Ruffle Formation in Both Mesenchymal and Amoeboid Modes of Motility
Inmaculada Banon-Rodriguez, Julia Saez de Guinoa, Alejandra Bernardini, Chiara Ragazzini, Estefania Fernandez, Yolanda R. Carrasco, Gareth E. Jones, Francisco Wandosell, Ines Maria Anton
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0070364
Abstract: The spatial distribution of signals downstream from receptor tyrosine kinases (RTKs) or G-protein coupled receptors (GPCR) regulates fundamental cellular processes that control cell migration and growth. Both pathways rely significantly on actin cytoskeleton reorganization mediated by nucleation-promoting factors such as the WASP-(Wiskott-Aldrich Syndrome Protein) family. WIP (WASP Interacting Protein) is essential for the formation of a class of polarised actin microdomain, namely dorsal ruffles, downstream of the RTK for PDGF (platelet-derived growth factor) but the underlying mechanism is poorly understood. Using lentivirally-reconstituted WIP-deficient murine fibroblasts we define the requirement for WIP interaction with N-WASP (neural WASP) and Nck for efficient dorsal ruffle formation and of WIP-Nck binding for fibroblast chemotaxis towards PDGF-AA. The formation of both circular dorsal ruffles in PDGF-AA-stimulated primary fibroblasts and lamellipodia in CXCL13-treated B lymphocytes are also compromised by WIP-deficiency. We provide data to show that a WIP-Nck signalling complex interacts with RTK to promote polarised actin remodelling in fibroblasts and provide the first evidence for WIP involvement in the control of migratory persistence in both mesenchymal (fibroblast) and amoeboid (B lymphocytes) motility.
Page 1 /22294
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.