Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99


Search Results: 1 - 10 of 31 matches for " Vanaporn Wuthiekanun "
All listed articles are free for downloading (OA Articles)
Page 1 /31
Display every page Item
Burkholderia pseudomallei Is Genetically Diverse in Agricultural Land in Northeast Thailand
Vanaporn Wuthiekanun,Direk Limmathurotsakul,Narisara Chantratita,Edward J. Feil,Nicholas P. J. Day,Sharon J. Peacock
PLOS Neglected Tropical Diseases , 2009, DOI: 10.1371/journal.pntd.0000496
Abstract: Background The soil-dwelling Gram-negative bacterium Burkholderia pseudomallei is the cause of melioidosis. Extreme structuring of genotype and genotypic frequency has been demonstrated for B. pseudomallei in uncultivated land, but its distribution and genetic diversity in agricultural land where most human infections are probably acquired is not well defined. Methods Fixed-interval soil sampling was performed in a rice paddy in northeast Thailand in which 100 grams of soil was sampled at a depth of 30 cm from 10×10 sampling points each measuring 2.5 m by 2.5 m. Soil was cultured for the presence of B. pseudomallei and genotyping of colonies present on primary culture plates was performed using a combination of pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Principal Findings B. pseudomallei was cultured from 28/100 samples. Genotyping of 630 primary colonies drawn from 11 sampling points demonstrated 10 PFGE banding pattern types, which on MLST were resolved into 7 sequence types (ST). Overlap of genotypes was observed more often between sampling points that were closely positioned. Two sampling points contained mixed B. pseudomallei genotypes, each with a numerically dominant genotype and one or more additional genotypes present as minority populations. Conclusions Genetic diversity and structuring of B. pseudomallei exists despite the effects of flooding and the physical and chemical processes associated with farming. These findings form an important baseline for future studies of environmental B. pseudomallei.
Burkholderia pseudomallei Is Spatially Distributed in Soil in Northeast Thailand
Direk Limmathurotsakul ,Vanaporn Wuthiekanun,Narisara Chantratita,Gumphol Wongsuvan,Premjit Amornchai,Nicholas P. J. Day,Sharon J. Peacock
PLOS Neglected Tropical Diseases , 2010, DOI: 10.1371/journal.pntd.0000694
Abstract: Background Melioidosis is a frequently fatal infectious disease caused by the soil dwelling Gram-negative bacterium Burkholderia pseudomallei. Environmental sampling is important to identify geographical distribution of the organism and related risk of infection to humans and livestock. The aim of this study was to evaluate spatial distribution of B. pseudomallei in soil and consider the implications of this for soil sampling strategies. Methods and Findings A fixed-interval sampling strategy was used as the basis for detection and quantitation by culture of B. pseudomallei in soil in two environmental sites (disused land covered with low-lying scrub and rice field) in northeast Thailand. Semivariogram and indicator semivariogram were used to evaluate the distribution of B. pseudomallei and its relationship with range between sampling points. B. pseudomallei was present on culture of 80/100 sampling points taken from the disused land and 28/100 sampling points from the rice field. The median B. pseudomallei cfu/gram from positive sampling points was 378 and 700 for the disused land and the rice field, respectively (p = 0.17). Spatial autocorrelation of B. pseudomallei was present, in that samples taken from areas adjacent to sampling points that were culture positive (negative) for B. pseudomallei were also likely to be culture positive (negative), and samples taken from areas adjacent to sampling points with a high (low) B. pseudomallei count were also likely to yield a high (low) count. Ranges of spatial autocorrelation in quantitative B. pseudomallei count were 11.4 meters in the disused land and 7.6 meters in the rice field. Conclusions We discuss the implications of the uneven distribution of B. pseudomallei in soil for future environmental studies, and describe a range of established geostatistical sampling approaches that would be suitable for the study of B. pseudomallei that take account of our findings.
Molecular detection and speciation of pathogenic Leptospira spp. in blood from patients with culture-negative leptospirosis
Siriphan Boonsilp, Janjira Thaipadungpanit, Premjit Amornchai, Vanaporn Wuthiekanun, Wirongrong Chierakul, Direk Limmathurotsakul, Nicholas P Day, Sharon J Peacock
BMC Infectious Diseases , 2011, DOI: 10.1186/1471-2334-11-338
Abstract: We evaluated our hypothesis during a prospective study of 418 consecutive patients presenting to a hospital in northeast Thailand with an acute febrile illness. Admission blood samples were taken for Leptospira culture and PCR. A single tube nested PCR that amplified a region of the rrs gene was developed and applied, amplicons sequenced and a phylogenetic tree reconstructed.39/418 (9%) patients were culture-positive for Leptospira spp., and 81/418 (19%) patients were culture-negative but rrs PCR-positive. The species associated with culture-positive leptospirosis (37 L. interrogans and 2 L. borgpetersenii) were comparable to those associated with culture-negative, PCR-positive leptospirosis (76 L. interrogans, 4 L. borgpetersenii, 1 unidentified, possibly new species).Molecular speciation failed to identify a unique bacterial subset in patients with culture-negative, PCR-positive leptospirosis. The rate of false-negative culture was high, and we speculate that antibiotic pre-treatment is the most likely explanation for this.Leptospirosis is an acute febrile illness caused by pathogenic species belonging to the genus Leptospira [1,2]. This zoonotic disease has a worldwide distribution but is most common in tropical and subtropical regions and has the greatest impact on public health in developing countries [1-4]. Disease is maintained by chronic carrier hosts that excrete the organism into the environment, and infection in man results from direct contact with infected animals or indirect contact with a contaminated environment [1-3].Leptospira are present in the blood during the first week of infective symptoms [1,2]. Culture is rarely performed in routine clinical practice since this may take several months and requires considerable expertise, which places it within the domain of specialist reference centres. Culture continues to have an important role, however, in defining the global epidemiology of infection [4]. Identification of the serovar of infecting isolate
Activities of Daily Living Associated with Acquisition of Melioidosis in Northeast Thailand: A Matched Case-Control Study
Direk Limmathurotsakul ,Manas Kanoksil,Vanaporn Wuthiekanun,Rungrueng Kitphati,Bianca deStavola,Nicholas P. J. Day,Sharon J. Peacock
PLOS Neglected Tropical Diseases , 2013, DOI: 10.1371/journal.pntd.0002072
Abstract: Background Melioidosis is a serious infectious disease caused by the Category B select agent and environmental saprophyte, Burkholderia pseudomallei. Most cases of naturally acquired infection are assumed to result from skin inoculation after exposure to soil or water. The aim of this study was to provide evidence for inoculation, inhalation and ingestion as routes of infection, and develop preventive guidelines based on this evidence. Methods/Principal Findings A prospective hospital-based 1:2 matched case-control study was conducted in Northeast Thailand. Cases were patients with culture-confirmed melioidosis, and controls were patients admitted with non-infectious conditions during the same period, matched for gender, age, and diabetes mellitus. Activities of daily living were recorded for the 30-day period before onset of symptoms, and home visits were performed to obtain drinking water and culture this for B. pseudomallei. Multivariable conditional logistic regression analysis based on 286 cases and 512 controls showed that activities associated with a risk of melioidosis included working in a rice field (conditional odds ratio [cOR] = 2.1; 95% confidence interval [CI] 1.4–3.3), other activities associated with exposure to soil or water (cOR = 1.4; 95%CI 0.8–2.6), an open wound (cOR = 2.0; 95%CI 1.2–3.3), eating food contaminated with soil or dust (cOR = 1.5; 95%CI 1.0–2.2), drinking untreated water (cOR = 1.7; 95%CI 1.1–2.6), outdoor exposure to rain (cOR = 2.1; 95%CI 1.4–3.2), water inhalation (cOR = 2.4; 95%CI 1.5–3.9), current smoking (cOR = 1.5; 95%CI 1.0–2.3) and steroid intake (cOR = 3.1; 95%CI 1.4–6.9). B. pseudomallei was detected in water source(s) consumed by 7% of cases and 3% of controls (cOR = 2.2; 95%CI 0.8–5.8). Conclusions/Significance We used these findings to develop the first evidence-based guidelines for the prevention of melioidosis. These are suitable for people in melioidosis-endemic areas, travelers and military personnel. Public health campaigns based on our recommendations are under development in Thailand.
Diagnostic Accuracy of Real-Time PCR Assays Targeting 16S rRNA and lipl32 Genes for Human Leptospirosis in Thailand: A Case-Control Study
Janjira Thaipadunpanit,Wirongrong Chierakul,Vanaporn Wuthiekanun,Direk Limmathurotsakul,Premjit Amornchai,Siriphan Boonslip,Lee D. Smythe,Roongrueng Limpaiboon,Alex R. Hoffmaster,Nicholas P. J. Day,Sharon J. Peacock
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0016236
Abstract: Rapid PCR-based tests for the diagnosis of leptospirosis can provide information that contributes towards early patient management, but these have not been adopted in Thailand. Here, we compare the diagnostic sensitivity and specificity of two real-time PCR assays targeting rrs or lipL32 for the diagnosis of leptospirosis in northeast Thailand.
Diagnostic Accuracy of a Loop-Mediated Isothermal PCR Assay for Detection of Orientia tsutsugamushi during Acute Scrub Typhus Infection
Daniel H. Paris ,Stuart D. Blacksell,Pruksa Nawtaisong,Kemajittra Jenjaroen,Achara Teeraratkul,Wirongrong Chierakul,Vanaporn Wuthiekanun,Pacharee Kantipong,Nicholas P. J. Day
PLOS Neglected Tropical Diseases , 2011, DOI: 10.1371/journal.pntd.0001307
Abstract: Background There is an urgent need to develop rapid and accurate point-of-care (POC) technologies for acute scrub typhus diagnosis in low-resource, primary health care settings to guide clinical therapy. Methodology/Principal Findings In this study we present the clinical evaluation of loop-mediated isothermal PCR assay (LAMP) in the context of a prospective fever study, including 161 patients from scrub typhus-endemic Chiang Rai, northern Thailand. A robust reference comparator set comprising following ‘scrub typhus infection criteria’ (STIC) was used: a) positive cell culture isolate and/or b) an admission IgM titer ≥1:12,800 using the ‘gold standard’ indirect immunofluorescence assay (IFA) and/or c) a 4-fold rising IFA IgM titer and/or d) a positive result in at least two out of three PCR assays. Compared to the STIC criteria, all PCR assays (including LAMP) demonstrated high specificity ranging from 96–99%, with sensitivities varying from 40% to 56%, similar to the antibody based rapid test, which had a sensitivity of 47% and a specificity of 95%. Conclusions/Significance The diagnostic accuracy of the LAMP assay was similar to realtime and nested conventional PCR assays, but superior to the antibody-based rapid test in the early disease course. The combination of DNA- and antibody-based detection methods increased sensitivity with minimal reduction of specificity, and expanded the timeframe of adequate diagnostic coverage throughout the acute phase of scrub typhus.
Genetic Diversity and Microevolution of Burkholderia pseudomallei in the Environment
Narisara Chantratita equal contributor,Vanaporn Wuthiekanun equal contributor,Direk Limmathurotsakul,Mongkol Vesaratchavest,Aunchalee Thanwisai,Premjit Amornchai,Sarinna Tumapa,Edward J. Feil,Nicholas P. Day,Sharon J. Peacock
PLOS Neglected Tropical Diseases , 2008, DOI: 10.1371/journal.pntd.0000182
Abstract: Background The soil dwelling Gram-negative pathogen Burkholderia pseudomallei is the cause of melioidosis. The diversity and population structure of this organism in the environment is poorly defined. Methods and Findings We undertook a study of B. pseudomallei in soil sampled from 100 equally spaced points within 237.5 m2 of disused land in northeast Thailand. B. pseudomallei was present on direct culture of 77/100 sampling points. Genotyping of 200 primary plate colonies from three independent sampling points was performed using a combination of pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Twelve PFGE types and nine sequence types (STs) were identified, the majority of which were present at only a single sampling point. Two sampling points contained four STs and the third point contained three STs. Although the distance between the three sampling points was low (7.6, 7.9, and 13.3 meters, respectively), only two STs were present in more than one sampling point. Each of the three samples was characterized by the localized expansion of a single B. pseudomallei clone (corresponding to STs 185, 163, and 93). Comparison of PFGE and MLST results demonstrated that two STs contained strains with variable PFGE banding pattern types, indicating geographic structuring even within a single MLST-defined clone. Conclusions We discuss the implications of this extreme structuring of genotype and genotypic frequency in terms of micro-evolutionary dynamics and ecology, and how our results may inform future sampling strategies.
Emergence of Community-Associated Methicillin-Resistant Staphylococcus aureus Associated with Pediatric Infection in Cambodia
Kheng Chheng, Sarah Tarquinio, Vanaporn Wuthiekanun, Lina Sin, Janjira Thaipadungpanit, Premjit Amornchai, Ngoun Chanpheaktra, Sarinna Tumapa, Hor Putchhat, Nicholas P. J. Day, Sharon J. Peacock
PLOS ONE , 2009, DOI: 10.1371/journal.pone.0006630
Abstract: Background The incidence of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infection is rising in the developed world but appears to be rare in developing countries. One explanation for this difference is that resource poor countries lack the diagnostic microbiology facilities necessary to detect the presence of CA-MRSA carriage and infection. Methodology and Principal Findings We developed diagnostic microbiology capabilities at the Angkor Hospital for Children, Siem Reap, western Cambodia in January 2006 and in the same month identified a child with severe community-acquired impetigo caused by CA-MRSA. A study was undertaken to identify and describe additional cases presenting between January 2006 and December 2007. Bacterial isolates underwent molecular characterization using multilocus sequence typing, staphylococcal cassette chromosome mec (SCCmec) typing, and PCR for the presence of the genes encoding Panton-Valentine Leukocidin (PVL). Seventeen children were identified with CA-MRSA infection, of which 11 had skin and soft tissue infection and 6 had invasive disease. The majority of cases were unrelated in time or place. Molecular characterization identified two independent MRSA clones; fifteen isolates were sequence type (ST) 834, SCCmec type IV, PVL gene-negative, and two isolates were ST 121, SCCmec type V, PVL gene-positive. Conclusions This represents the first ever report of MRSA in Cambodia, spread of which would pose a significant threat to public health. The finding that cases were mostly unrelated in time or place suggests that these were sporadic infections in persons who were CA-MRSA carriers or contacts of carriers, rather than arising in the context of an outbreak.
A Simple Scoring System to Differentiate between Relapse and Re-Infection in Patients with Recurrent Melioidosis
Direk Limmathurotsakul ,Wipada Chaowagul,Narisara Chantratita,Vanaporn Wuthiekanun,Mayurachat Biaklang,Sarinna Tumapa,Nicholas J. White,Nicholas P. J. Day,Sharon J. Peacock
PLOS Neglected Tropical Diseases , 2008, DOI: 10.1371/journal.pntd.0000327
Abstract: Background Melioidosis is an important cause of morbidity and mortality in East Asia. Recurrent melioidosis occurs in around 10% of patients following treatment either because of relapse with the same strain or re-infection with a new strain of Burkholderia pseudomallei. Distinguishing between the two is important but requires bacterial genotyping. The aim of this study was to develop a simple scoring system to distinguish re-infection from relapse. Methods In a prospective study of 2,804 consecutive adult patients with melioidosis presenting to Sappasithiprasong Hospital, NE Thailand, between1986 and 2005, there were 141 patients with recurrent melioidosis with paired strains available for genotyping. Of these, 92 patients had relapse and 49 patients had re-infection. Variables associated with relapse or re-infection were identified by multivariable logistic regression and used to develop a predictive model. Performance of the scoring system was quantified with respect to discrimination (area under receiver operating characteristic curves, AUC) and categorization (graphically). Bootstrap resampling was used to internally validate the predictors and adjust for over-optimism. Findings Duration of oral antimicrobial treatment, interval between the primary episode and recurrence, season, and renal function at recurrence were independent predictors of relapse or re-infection. A score of <5 correctly identified relapse in 76 of 89 patients (85%), whereas a score ≥5 correctly identified re-infection in 36 of 52 patients (69%). The scoring index had good discriminative power, with a bootstrap bias-corrected AUC of 0.80 (95%CI: 0.73–0.87). Conclusions A simple scoring index to predict the cause of recurrent melioidosis has been developed to provide important bedside information where rapid bacterial genotyping is unavailable.
High Rates of Homologous Recombination in the Mite Endosymbiont and Opportunistic Human Pathogen Orientia tsutsugamushi
Piengchan Sonthayanon ,Sharon J. Peacock,Wirongrong Chierakul,Vanaporn Wuthiekanun,Stuart D. Blacksell,Mathew T. G. Holden,Stephen D. Bentley,Edward J. Feil,Nicholas P. J. Day
PLOS Neglected Tropical Diseases , 2010, DOI: 10.1371/journal.pntd.0000752
Abstract: Orientia tsutsugamushi is an intracellular α-proteobacterium which resides in trombiculid mites, and is the causative agent of scrub typhus in East Asia. The genome sequence of this species has revealed an unprecedented number of repeat sequences, most notably of the genes encoding the conjugative properties of a type IV secretion system (T4SS). Although this observation is consistent with frequent intragenomic recombination, the extent of homologous recombination (gene conversion) in this species is unknown. To address this question, and to provide a protocol for the epidemiological surveillance of this important pathogen, we have developed a multilocus sequence typing (MLST) scheme based on 7 housekeeping genes (gpsA, mdh, nrdB, nuoF, ppdK, sucD, sucB). We applied this scheme to the two published genomes, and to DNA extracted from blood taken from 84 Thai scrub typhus patients, from 20 cultured Thai patient isolates, 1 Australian patient sample, and from 3 cultured type strains. These data demonstrated that the O. tsutsugamushi population was both highly diverse [Simpson's index (95% CI) = 0.95 (0.92–0.98)], and highly recombinogenic. These results are surprising given the intracellular life-style of this species, but are broadly consistent with results obtained for Wolbachia, which is an α-proteobacterial reproductive parasite of arthropods. We also compared the MLST data with ompA sequence data and noted low levels of consistency and much higher discrimination by MLST. Finally, twenty-five percent of patients in this study were simultaneously infected with multiple sequence types, suggesting multiple infection caused by either multiple mite bites, or multiple strains co-existing within individual mites.
Page 1 /31
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.