oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2019 ( 107 )

2018 ( 173 )

2017 ( 170 )

2016 ( 281 )

Custom range...

Search Results: 1 - 10 of 131104 matches for " V. Blum "
All listed articles are free for downloading (OA Articles)
Page 1 /131104
Display every page Item
Active exploration of sensor networks from a robotics perspective
Christian Blum,Verena V. Hafner
Computer Science , 2015,
Abstract: Traditional algorithms for robots who need to integrate into a wireless network often focus on one specific task. In this work we want to develop simple, adaptive and reusable algorithms for real world applications for this scenario. Starting with the most basic task for mobile wireless network nodes, finding the position of another node, we introduce an algorithm able to solve this task. We then show how this algorithm can readily be employed to solve a large number of other related tasks like finding the optimal position to bridge two static network nodes. For this we first introduce a meta-algorithm inspired by autonomous robot learning strategies and the concept of internal models which yields a class of source seeking algorithms for mobile nodes. The effectiveness of this algorithm is demonstrated in real world experiments using a physical mobile robot and standard 802.11 wireless LAN in an office environment. We also discuss the differences to conventional algorithms and give the robotics perspective on this class of algorithms. Then we proceed to show how more complex tasks, which might be encountered by mobile nodes, can be encoded in the same framework and how the introduced algorithm can solve them. These tasks can be direct (cross layer) optimization tasks or can also encode more complex tasks like bridging two network nodes. We choose the bridging scenario as an example, implemented on a real physical robot, and show how the robot can solve it in a real world experiment.
Gradient-based Taxis Algorithms for Network Robotics
Christian Blum,Verena V. Hafner
Computer Science , 2014,
Abstract: Finding the physical location of a specific network node is a prototypical task for navigation inside a wireless network. In this paper, we consider in depth the implications of wireless communication as a measurement input of gradient-based taxis algorithms. We discuss how gradients can be measured and determine the errors of this estimation. We then introduce a gradient-based taxis algorithm as an example of a family of gradient-based, convergent algorithms and discuss its convergence in the context of network robotics. We also conduct an exemplary experiment to show how to overcome some of the specific problems related to network robotics. Finally, we show how to adapt this framework to more complex objectives.
Towards an analytical theory for charged hard spheres
L. Blum,D. V. Perez Veloz
Physics , 2007,
Abstract: Ion mixtures require an exclusion core to avoid collapse. The Debye Hueckel theory, where ions are point charges, is accurate only in the limit of infinite dilution. The MSA is the embedding of hard cores into DH, is valid for higher densities. In the MSA the properties of any ionic mixture can be represented by a single screening parameter $\Gamma$. For equal ionic size restricted model is obtained from the Debye parameter $\kappa$. This one parameter representation (BIMSA) is valid for complex and associating systems, such as the general n-polyelectrolytes. The BIMSA is the only theory that satisfies the infinite dilution limit of the DH theory for any chain length. The contact pair distribution function of hard ions mixture is a functional of $\Gamma$ and a small mean field parameter. This yields good agreement with the Monte Carlo (Bresme et al. Phys. Rev. E {\textbf 51} 289 (1995)) .
Resonant Processes in a Frozen Gas
J. S. Frasier,V. Celli,T. Blum
Physics , 1998, DOI: 10.1103/PhysRevA.59.4358
Abstract: We present a theory of resonant processes in a frozen gas of atoms interacting via dipole-dipole potentials that vary as $r^{-3}$, where $r$ is the interatomic separation. We supply an exact result for a single atom in a given state interacting resonantly with a random gas of atoms in a different state. The time development of the transition process is calculated both on- and off-resonance, and the linewidth with respect to detuning is obtained as a function of time $t$. We introduce a random spin Hamiltonian to model a dense system of resonators and show how it reduces to the previous model in the limit of a sparse system. We derive approximate equations for the average effective spin, and we use them to model the behavior seen in the experiments of Anderson et al. and Lowell et al. The approach to equilibrium is found to be proportional to $\exp (-\sqrt{\gamma_{eq}t}$), where the constant $\gamma _{eq}$ is explicitly related to the system's parameters.
Geophysical validation of temperature retrieved by the ESA processor from MIPAS/ENVISAT atmospheric limb-emission measurements
M. Ridolfi,U. Blum,B. Carli,V. Catoire
Atmospheric Chemistry and Physics Discussions , 2007,
Abstract: The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) has been operating since March 2002 onboard of the ENVIronmental SATellite of the European Space Agency (ESA). The high resolution (0.035 cm 1) limb-emission measurements acquired by MIPAS in the first two years of operation have very good geographical and temporal coverage and have been re-processed by ESA with the most recent versions (4.61 and 4.62) of the inversion algorithms. The products of this processing chain are geolocated profiles of temperature and of the volume mixing ratios of six key atmospheric constituents: H2O, O3, HNO3, CH4, N2O and NO2. As for all the measurements made with innovative instruments and techniques, this data set requires a thorough validation. In this paper we present a geophysical validation of the temperature profiles derived from MIPAS measurements by the ESA retrieval algorithm. The validation is carried-out by comparing MIPAS temperature with correlative measurements made by radiosondes, lidars, in-situ and remote sensors operated either from the ground or stratospheric balloons. The results of the intercomparison indicate that the bias of the MIPAS profiles is generally smaller than 1 or 2 K depending on altitude. Furthermore we find that, especially at the edges of the altitude range covered by the MIPAS scan, the random error estimated from the intercomparison is larger (typically by a factor of two to three) than the corresponding estimate derived on the basis of error propagation. In this work we also characterize the discrepancies between MIPAS temperature and the temperature fields resulting from the analyses of the European Centre for Medium-range Weather Forecasts (ECMWF). The bias and the standard deviation of these discrepancies are consistent with those obtained when comparing MIPAS to correlative measurements; however, in this case the detected bias has a peculiar behavior as a function of altitude. This behavior is very similar to that observed in previous studies and is suspected to be due to a problem in the ECMWF temperature.
Geophysical validation of temperature retrieved by the ESA processor from MIPAS/ENVISAT atmospheric limb-emission measurements
M. Ridolfi,U. Blum,B. Carli,V. Catoire
Atmospheric Chemistry and Physics (ACP) & Discussions (ACPD) , 2007,
Abstract: The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) has been operating since March 2002 onboard of the ENVIronmental SATellite of the European Space Agency (ESA). The high resolution (0.035 cm 1 full width half maximum, unapodized) limb-emission measurements acquired by MIPAS in the first two years of operation have very good geographical and temporal coverage and have been re-processed by ESA with the most recent versions (4.61 and 4.62) of the inversion algorithms. The products of this processing chain are pressures at the tangent points and geolocated profiles of temperature and of the volume mixing ratios of six key atmospheric constituents: H2O, O3, HNO3, CH4, N2O and NO2. As for all the measurements made with innovative instruments and techniques, this data set requires a thorough validation. In this paper we present a geophysical validation of the temperature profiles derived from MIPAS measurements by the ESA retrieval algorithm. The validation is carried-out by comparing MIPAS temperature with correlative measurements made by radiosondes, lidars, in-situ and remote sensors operated either from the ground or stratospheric balloons. The results of the intercomparison indicate that the bias of the MIPAS profiles is generally smaller than 1 or 2 K depending on altitude. Furthermore we find that, especially at the edges of the altitude range covered by the MIPAS scan, the random error estimated from the intercomparison is larger (typically by a factor of two to three) than the corresponding estimate derived on the basis of error propagation. In this work we also characterize the discrepancies between MIPAS temperature and the temperature fields resulting from the analyses of the European Centre for Medium-range Weather Forecasts (ECMWF). The bias and the standard deviation of these discrepancies are consistent with those obtained when comparing MIPAS to correlative measurements; however, in this case the detected bias has a peculiar behavior as a function of altitude. This behavior is very similar to that observed in previous studies and is suspected to be due to vertical oscillations in the ECMWF temperature. The current understanding is that, at least in the upper stratosphere (above ≈10 hPa), these oscillations are caused by a discrepancy between model biases and biases of assimilated radiances from primarily nadir sounders.
Towards an analytical theory for charged hard spheres
L.Blum,D.V.P.Veloz
Condensed Matter Physics , 2007,
Abstract: Ion mixtures require an exclusion core to avoid collapse. The Debye Hueckel (DH) theory, where ions are point charges, is accurate only in the limit of infinite dilution. The mean spherical approximation (MSA) is the embedding of hard cores into DH, and is valid for higher densities. The properties of any ionic mixture can be represented by the single screening parameter Γ which for the equal ionic size restricted model is obtained from the Debye parameter κ. This Γ representation, the binding mean spherical approximation (BIMSA), is also valid for complex/associating systems, such as the general n-polyelectrolytes. The BIMSA is the only theory that satisfies the infinite dilution limit of the DH theory for any chain length. Furthermore, the contact pair distribution function calculated from our theory agrees with the Monte Carlo of Bresmeea. (Phys. Rev. E, 1995, 51, 289).
A note on the survival of the sungrazing comet C/2011 W3 (Lovejoy) within the Roche limit
B. Gundlach,J. Blum,Yu. V. Skorov,H. U. Keller
Physics , 2012,
Abstract: In this work, a novel approach to explain the survival of sungrazing comets within the Roche limit is presented. It is shown that in the case of low tensile strength of the cometary nucleus, tidal splitting of the nucleus can be prevented by the reaction force caused by the sublimation of the icy constituents. The survival of Comet C/2011 W3 (Lovejoy) within the Roche limit of the Sun is, thus, the result of high tensile strength of the nucleus, or the result of the reaction force caused by the strong outgassing of the icy constituents near the Sun.
Really Cool Stars and the Star Formation History at the Galactic Center
R. D. Blum,Solange V. Ramirez,K. Sellgren,K. Olsen
Physics , 2003, DOI: 10.1086/378380
Abstract: We present R=550 to 1200 near infrared H and K spectra for a magnitude limited sample of 79 asymptotic giant branch and cool supergiant stars in the central ~ 5 pc (diameter) of the Galaxy. We use a set of similar spectra obtained for solar neighborhood stars with known Teff and Mbol that is in the same range as the Galactic center (GC) sample to derive Teff and Mbol for the GC sample. We then construct the Hertzsprung--Russell (HRD) diagram for the GC sample. Using an automated maximum likelihood routine, we derive a coarse star formation history of the GC. We find (1) roughly 75% of the stars formed in the central few pc are older than 5 Gyr; (2) the star formation rate (SFR) is variable over time, with a roughly 4 times higher star formation rate in the last 100 Myr compared to the average SFR; (3) our model can only match dynamical limits on the total mass of stars formed by limiting the IMF to masses above 0.7 M$_\odot$. This could be a signature of mass segregation or of the bias toward massive star formation from the unique star formation conditions in the GC; (4) blue supergiants account for 12 % of the total sample observed, and the ratio of red to blue supergiants is roughly 1.5; (5) models with isochrones with [Fe/H] = 0.0 over all ages fit the stars in our HRD better than models with lower [Fe/H] in the oldest age bins, consistent with the finding of Ramirez et al. (2000) that stars with ages between 10 Myr and 1 Gyr have solar [Fe/H].
What drives the dust activity of comet 67P/Churyumov-Gerasimenko?
B. Gundlach,J. Blum,H. U. Keller,Y. V. Skorov
Physics , 2015, DOI: 10.1051/0004-6361/201525828
Abstract: We use the gravitational instability formation scenario of cometesimals to derive the aggregate size that can be released by the gas pressure from the nucleus of comet 67P/Churyumov-Gerasimenko for different heliocentric distances and different volatile ices. To derive the ejected aggregate sizes, we developed a model based on the assumption that the entire heat absorbed by the surface is consumed by the sublimation process of one volatile species. The calculations were performed for the three most prominent volatile materials in comets, namely, H_20 ice, CO_2 ice, and CO ice. We find that the size range of the dust aggregates able to escape from the nucleus into space widens when the comet approaches the Sun and narrows with increasing heliocentric distance, because the tensile strength of the aggregates decreases with increasing aggregate size. The activity of CO ice in comparison to H_20 ice is capable to detach aggregates smaller by approximately one order of magnitude from the surface. As a result of the higher sublimation rate of CO ice, larger aggregates are additionally able to escape from the gravity field of the nucleus. Our model can explain the large grains (ranging from 2 cm to 1 m in radius) in the inner coma of comet 67P/Churyumov-Gerasimenko that have been observed by the OSIRIS camera at heliocentric distances between 3.4 AU and 3.7 AU. Furthermore, the model predicts the release of decimeter-sized aggregates (trail particles) close to the heliocentric distance at which the gas-driven dust activity vanishes. However, the gas-driven dust activity cannot explain the presence of particles smaller than ~1 mm in the coma because the high tensile strength required to detach these particles from the surface cannot be provided by evaporation of volatile ices. These smaller particles can be produced for instance by spin-up and centrifugal mass loss of ejected larger aggregates.
Page 1 /131104
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.