oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2019 ( 43 )

2018 ( 58 )

2017 ( 36 )

2016 ( 53 )

Custom range...

Search Results: 1 - 10 of 18494 matches for " U. Riebesell "
All listed articles are free for downloading (OA Articles)
Page 1 /18494
Display every page Item
CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum
Y. Wu, K. Gao,U. Riebesell
Biogeosciences (BG) & Discussions (BGD) , 2010,
Abstract: CO2/pH perturbation experiments were carried out under two different pCO2 levels (39.3 and 101.3 Pa) to evaluate effects of CO2-induced ocean acidification on the marine diatom Phaeodactylum tricornutum. After acclimation (>20 generations) to ambient and elevated CO2 conditions (with corresponding pH values of 8.15 and 7.80, respectively), growth and photosynthetic carbon fixation rates of high CO2 grown cells were enhanced by 5% and 12%, respectively, and dark respiration stimulated by 34% compared to cells grown at ambient CO2. The half saturation constant (Km) for carbon fixation (dissolved inorganic carbon, DIC) increased by 20% under the low pH and high CO2 condition, reflecting a decreased affinity for HCO3– or/and CO2 and down-regulated carbon concentrating mechanism (CCM). In the high CO2 grown cells, the electron transport rate from photosystem II (PSII) was photoinhibited to a greater extent at high levels of photosynthetically active radiation, while non-photochemical quenching was reduced compared to low CO2 grown cells. This was probably due to the down-regulation of CCM, which serves as a sink for excessive energy. The balance between these positive and negative effects on diatom productivity will be a key factor in determining the net effect of rising atmospheric CO2 on ocean primary production.
CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum
Y. Wu,K. Gao,U. Riebesell
Biogeosciences Discussions , 2010, DOI: 10.5194/bgd-7-3855-2010
Abstract: CO2/pH perturbation experiments were carried out under two different pCO2 levels (39.3 and 101.3 Pa) to evaluate effects of CO2-induced ocean acidification on the marine diatom Phaeodactylum tricornutum. After acclimation (>20 generations) to ambient and elevated CO2 conditions (with corresponding pH values of 8.15 and 7.80, respectively), growth and photosynthetic carbon fixation rates of high CO2 grown cells were enhanced by 5% and 12%, respectively, and dark respiration stimulated by 34% compared to cells grown at ambient CO2. The K1/2 (dissolved inorganic carbon, DIC) for carbon fixation increased by 20% under the low pH and high CO2 condition, reflecting a decreased photosynthetic affinity for HCO3 or/and CO2 and down-regulated carbon concentrating mechanism (CCM). In the high CO2 grown cells, the electron transport rate from photosystem II (PSII) was photoinhibited to a greater extent at high levels of photosynthetically active radiation, while non-photochemical quenching was reduced compared to low CO2 grown cells. This was probably due to the down-regulation of CCM, which serves as a sink for excessive energy. Increasing seawater pCO2 and decreasing pH associated with atmospheric CO2 rise may enhance diatom growth, down-regulate their CCM, and enhanced their photo-inhibition and dark respiration. The balance between these positive and negative effects on diatom productivity will be a key factor in determining the net effect of rising atmospheric CO2 on ocean primary production.
Effects of changes in carbonate chemistry speciation on Coccolithus braarudii: a discussion of coccolithophorid sensitivities
S. A. Krug, K. G. Schulz,U. Riebesell
Biogeosciences (BG) & Discussions (BGD) , 2011,
Abstract: Ocean acidification and associated shifts in carbonate chemistry speciation induced by increasing levels of atmospheric carbon dioxide (CO2) have the potential to impact marine biota in various ways. The process of biogenic calcification, for instance, is usually shown to be negatively affected. In coccolithophores, an important group of pelagic calcifiers, changes in cellular calcification rates in response to changing ocean carbonate chemistry appear to differ among species. By applying a wider CO2 range we show that a species previously reported insensitive to seawater acidification, Coccolithus braarudii, responds both in terms of calcification and photosynthesis, although at higher levels of CO2. Thus, observed differences between species seem to be related to individual sensitivities while the underlying mechanisms could be the same. On this basis we develop a conceptual model of coccolithophorid calcification and photosynthesis in response to CO2-induced changes in seawater carbonate chemistry speciation.
Coccolithophores and calcite saturation state in the Baltic and Black Seas
T. Tyrrell, B. Schneider, A. Charalampopoulou,U. Riebesell
Biogeosciences (BG) & Discussions (BGD) , 2008,
Abstract: The Baltic and Black Seas are both brackish, that is to say both have salinities intermediate between freshwater and seawater. The coccolithophore Emiliania huxleyi is abundant in one, the Black Sea, but absent from the other, the Baltic Sea. Here we present summertime coccolithophore measurements confirming this difference, as well as data on the calcium carbonate saturation state of the Baltic Sea. We find that the Baltic Sea becomes undersaturated (or nearly so) in winter, with respect to both the aragonite and calcite mineral forms of CaCO3. Data for the Black Sea are more limited, but it appears to remain strongly supersaturated year-round. The absence of E. huxleyi from the Baltic Sea could therefore potentially be explained by dissolution of their coccoliths in winter, suggesting that minimum annual (wintertime) saturation states could be most important in determining future ocean acidification impacts. In addition to this potential importance of winter saturation state, alternative explanations are also possible, either related to differences in salinity or else to differences in silicate concentrations.
Technical Note: A simple method for air–sea gas exchange measurements in mesocosms and its application in carbon budgeting
J. Czerny, K. G. Schulz, A. Ludwig,U. Riebesell
Biogeosciences (BG) & Discussions (BGD) , 2013,
Abstract: Mesocosms as large experimental units provide the opportunity to perform elemental mass balance calculations, e.g. to derive net biological turnover rates. However, the system is in most cases not closed at the water surface and gases exchange with the atmosphere. Previous attempts to budget carbon pools in mesocosms relied on educated guesses concerning the exchange of CO2 with the atmosphere. Here, we present a simple method for precise determination of air–sea gas exchange in mesocosms using N2O as a deliberate tracer. Beside the application for carbon budgeting, transfer velocities can be used to calculate exchange rates of any gas of known concentration, e.g. to calculate aquatic production rates of climate relevant trace gases. Using an arctic KOSMOS (Kiel Off Shore Mesocosms for future Ocean Simulation) experiment as an exemplary dataset, it is shown that the presented method improves accuracy of carbon budget estimates substantially. Methodology of manipulation, measurement, data processing and conversion to CO2 fluxes are explained. A theoretical discussion of prerequisites for precise gas exchange measurements provides a guideline for the applicability of the method under various experimental conditions.
Effects of long-term high CO2 exposure on two species of coccolithophores
M. N. Müller, K. G. Schulz,U. Riebesell
Biogeosciences (BG) & Discussions (BGD) , 2010,
Abstract: The physiological performance of two coccolithophore species, Emiliania huxleyi and Coccolithus braarudii, was investigated during long-term exposure to elevated pCO2 levels. Mono-specific cultures were grown over 152 (E. huxleyi) and 65 (C. braarudii) generations while pCO2 was gradually increased to maximum levels of 1150 μatm (E. huxleyi) and 930 μatm (C. braarudii) and kept constant thereafter. Rates of cell growth and cell quotas of particulate organic carbon (POC), particulate inorganic carbon (PIC) and total particulate nitrogen (TPN) were determined repeatedly throughout the incubation period. Increasing pCO2 caused a decrease in cell growth rate of 9% and 29% in E. huxleyi and C. braarudii, respectively. In both species cellular PIC:TPN and PIC:POC ratios decreased in response to rising pCO2, whereas no change was observed in the POC:TPN ratios of E. huxleyi and C. braarudii. These results are consistent with those obtained in shorter-term high CO2 exposure experiments following abrupt pertubations of the seawater carbonate system and indicate that for the strains tested here a gradual CO2 increase does not alleviate CO2/pH sensitivity.
Influence of elevated CO2 concentrations on cell division and nitrogen fixation rates in the bloom-forming cyanobacterium Nodularia spumigena
J. Czerny, J. Barcelos e Ramos,U. Riebesell
Biogeosciences (BG) & Discussions (BGD) , 2009,
Abstract: The surface ocean absorbs large quantities of the CO2 emitted to the atmosphere from human activities. As this CO2 dissolves in seawater, it reacts to form carbonic acid. While this phenomenon, called ocean acidification, has been found to adversely affect many calcifying organisms, some photosynthetic organisms appear to benefit from increasing [CO2]. Among these is the cyanobacterium Trichodesmium, a predominant diazotroph (nitrogen-fixing) in large parts of the oligotrophic oceans, which responded with increased carbon and nitrogen fixation at elevated pCO2. With the mechanism underlying this CO2 stimulation still unknown, the question arises whether this is a common response of diazotrophic cyanobacteria. In this study we therefore investigate the physiological response of Nodularia spumigena, a heterocystous bloom-forming diazotroph of the Baltic Sea, to CO2-induced changes in seawater carbonate chemistry. N. spumigena reacted to seawater acidification/carbonation with reduced cell division rates and nitrogen fixation rates, accompanied by significant changes in carbon and phosphorus quota and elemental composition of the formed biomass. Possible explanations for the contrasting physiological responses of Nodularia compared to Trichodesmium may be found in the different ecological strategies of non-heterocystous (Trichodesmium) and heterocystous (Nodularia) cyanobacteria.
Short-term response of the coccolithophore Emiliania huxleyi to an abrupt change in seawater carbon dioxide concentrations
J. Barcelos e Ramos, M. N. Müller,U. Riebesell
Biogeosciences (BG) & Discussions (BGD) , 2010,
Abstract: The response of the coccolithophore Emiliania huxleyi to rising CO2 concentrations is well documented for acclimated cultures where cells are exposed to the CO2 treatments for several generations prior to the experiment. The exact number of generations required for acclimation to CO2-induced changes in seawater carbonate chemistry, however, is unknown. Here we show that Emiliania huxleyi's short-term response (26 h) after cultures (grown at 500 μatm) were abruptly exposed to changed CO2 concentrations (~190, 410, 800 and 1500 μatm) is similar to that obtained with acclimated cultures under comparable conditions in earlier studies. Most importantly, from the lower CO2 levels (190 and 410 μatm) to 750 and 1500 μatm calcification decreased and organic carbon fixation increased within the first 8 to 14 h after exposing the cultures to changes in carbonate chemistry. This suggests that Emiliania huxleyi rapidly alters the rates of essential metabolical processes in response to changes in seawater carbonate chemistry, establishing a new physiological "state" (acclimation) within a matter of hours. If this relatively rapid response applies to other phytoplankton species, it may simplify interpretation of studies with natural communities (e.g. mesocosm studies and ship-board incubations), where often it is not feasible to allow for a pre-conditioning phase before starting experimental incubations.
Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: mortality, shell degradation, and shell growth
S. Lischka, J. Büdenbender, T. Boxhammer,U. Riebesell
Biogeosciences (BG) & Discussions (BGD) , 2011,
Abstract: Due to their aragonitic shell, thecosome pteropods may be particularly vulnerable to ocean acidification driven by anthropogenic CO2 emissions. This applies specifically to species inhabiting Arctic surface waters that are projected to become temporarily and locally undersaturated with respect to aragonite as early as 2016. This study investigated the effects of rising partial pressure of CO2 (pCO2) and elevated temperature on pre-winter juveniles of the polar pteropod Limacina helicina. After a 29 day experiment in September/October 2009 at three different temperatures and under pCO2 scenarios projected for this century, mortality, shell degradation, shell diameter and shell increment were investigated. Temperature and pCO2 had a significant effect on mortality, but temperature was the overriding factor. Shell diameter, shell increment and shell degradation were significantly impacted by pCO2 but not by temperature. Mortality was 46% higher at 8 °C than at in situ temperature (3 °C), and 14% higher at 1100 μatm than at 230 μatm. Shell diameter and increment were reduced by 10 and 12% at 1100 μatm and 230 μatm, respectively, and shell degradation was 41% higher at elevated compared to ambient pCO2. We conclude that pre-winter juveniles will be negatively affected by both rising temperature and pCO2 which may result in a possible decline in abundance of the overwintering population, the basis for next year's reproduction.
Effects of CO2-induced changes in seawater carbonate chemistry speciation on Coccolithus braarudii: a conceptual model of coccolithophorid sensitivities
S. A. Krug,K. G. Schulz,U. Riebesell
Biogeosciences Discussions , 2010, DOI: 10.5194/bgd-7-8763-2010
Abstract: Ocean acidification and associated shifts in carbonate chemistry speciation induced by increasing levels of atmospheric carbon dioxide (CO2) have the potential to impact marine biota in various ways. The process of biogenic calcification, for instance, is usually shown to be negatively affected. In coccolithophores, an important group of pelagic calcifiers, changes in cellular calcification rates in response to changing ocean carbonate chemistry appear to differ among species. By applying a wider CO2 range we show that a species previously reported insensitive to seawater acidification, Coccolithus braarudii, responds both in terms of calcification and photosynthesis, although at higher thresholds. Thus, observed differences between species seem to be related to individual sensitivities while the underlying mechanisms could be the same. On this basis we develop a conceptual model of coccolithophorid calcification and photosynthesis in response to CO2-induced changes in seawater carbonate chemistry speciation.
Page 1 /18494
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.