Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99


Any time

2020 ( 1 )

2019 ( 86 )

2018 ( 399 )

2017 ( 349 )

Custom range...

Search Results: 1 - 10 of 31143 matches for " Tung-Hu Tsai "
All listed articles are free for downloading (OA Articles)
Page 1 /31143
Display every page Item
Glycyrrhizin Represses Total Parenteral Nutrition-Associated Acute Liver Injury in Rats by Suppressing Endoplasmic Reticulum Stress
Jai-Jen Tsai,Hsing-Chun Kuo,Kam-Fai Lee,Tung-Hu Tsai
International Journal of Molecular Sciences , 2013, DOI: 10.3390/ijms140612563
Abstract: Total parenteral nutrition (TPN) is an artificial way to support daily nutritional requirements by bypassing the digestive system, but long-term TPN administration may cause severe liver dysfunction. Glycyrrhizin is an active component of licorice root that has been widely used to treat chronic hepatitis. The aim of this study is to investigate the hepatoprotective effect of glycyrrhizin on TPN-associated acute liver injury in vivo. Liver dysfunction was induced by intravenous infusion of TPN at a flow rate of 20 mL/kg/h for three h in Sprague Dawley rats. The rats were pretreated with Glycyrrhizin (1, 3 and 10 mg/kg intravenously). After receiving TPN or saline (control group) for three h, the rats were sacrificed, blood samples were collected for biochemical analyses and liver tissue was removed for histopathological and immunohistochemical examination. We found that aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (TB) and triglyceride (TG) levels were significantly increased in the TPN group without glycyrrhizin pretreatment and decreased in the glycyrrhizin-pretreated TPN group in a dose-dependent manner. The stained liver sections showed that glycyrrhizin relieved acute liver injury. The upregulation of serum protein biomarkers of reactive nitrogen species, including nitrotyrosine and inducible NO synthase (iNOS), were attenuated by glycyrrhizin pretreatment. Levels of endoplasmic reticulum (ER) stress factors, such as phosphorylation of JNK1/2, p38 MAPK and CHOP, were decreased by glycyrrhizin pretreatment. In summary, our results suggest that glycyrrhizin decreases TPN-associated acute liver injury factors by suppressing endoplasmic reticulum stress and reactive nitrogen stress.
A Study of the Wound Healing Mechanism of a Traditional Chinese Medicine, Angelica sinensis, Using a Proteomic Approach
Chia-Yen Hsiao,Ching-Yi Hung,Tung-Hu Tsai,Kin-Fu Chak
Evidence-Based Complementary and Alternative Medicine , 2012, DOI: 10.1155/2012/467531
Abstract: Angelica sinensis (AS) is a traditional Chinese herbal medicine that has been formulated clinically to treat various form of skin trauma and to help wound healing. However, the mechanism by which it works remains a mystery. In this study we have established a new platform to evaluate the pharmacological effects of total AS herbal extracts as well as its major active component, ferulic acid (FA), using proteomic and biochemical analysis. Cytotoxic and proliferation-promoting concentrations of AS ethanol extracts (AS extract) and FA were tested, and then the cell extracts were subject to 2D PAGE analysis. We found 51 differentially expressed protein spots, and these were identified by mass spectrometry. Furthermore, biomolecular assays, involving collagen secretion, migration, and ROS measurements, gave results that are consistent with the proteomic analysis. In this work, we have demonstrated a whole range of pharmacological effects associated with Angelica sinensis that might be beneficial when developing a wound healing pharmaceutical formulation for the herbal medicine.
Paeonol Protects Memory after Ischemic Stroke via Inhibiting β-Secretase and Apoptosis
Shan-Yu Su,Chin-Yi Cheng,Tung-Hu Tsai,Ching-Liang Hsieh
Evidence-Based Complementary and Alternative Medicine , 2012, DOI: 10.1155/2012/932823
Abstract: Poststroke dementia commonly occurs following stroke, with its pathogenesis related to β-amyloid production and apoptosis. The present study evaluate the effects of paeonol, one of the phenolic phytochemicals isolated from the Chinese herb Paeonia suffruticosa Andrews (MC), on protection from memory loss after ischemic stroke in the subacute stage. Rats were subjected to transient middle cerebral artery occlusion (tMCAo) with 10 min of ischemia. The data revealed that paeonol recovered the step-through latency in the retrieval test seven days after tMCAo, but did not improve the neurological deficit induced by tMCAo. Levels of Amyloid precursor protein (APP)- and beta-site APP cleaving enzyme (BACE; β-secretase)-immunoreactive cells, and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL)-positive cells decreased in the paeonol-administered group. Western blotting revealed decreased levels of Bax protein in mitochondria and apoptosis-inducing factor (AIF) in cytosol following paeonol treatment. In conclusion, we speculate that paeonol protected memory after ischemic stroke via reducing APP, BACE, and apoptosis. Supression the level of Bax and blocking the release of AIF into cytosol might participate in the anti-apoptosis provided by paeonol.
The Molecular Basis of Wound Healing Processes Induced by Lithospermi Radix: A Proteomics and Biochemical Analysis
Chia-Yen Hsiao,Tung-Hu Tsai,Kin-Fu Chak
Evidence-Based Complementary and Alternative Medicine , 2012, DOI: 10.1155/2012/508972
Abstract: Lithospermi Radix (LR) is an effective traditional Chinese herb in various types of wound healing; however, its mechanism of action remains unknown. A biochemical and proteomic platform was generated to explore the biological phenomena associated with LR and its active component shikonin. We found that both LR ethanol extracts and shikonin are able to promote cell proliferation by up to 25%. The results of proteomic analysis revealed that twenty-two differentially expressed proteins could be identified when fibroblast cells were treated with LR or shikonin. The functions of those proteins are associated with antioxidant activity, antiapoptosis activity, the regulation of cell mobility, the secretion of collagen, the removal of abnormal proteins, and the promotion of cell proliferation, indicating that the efficacy of LR in wound healing may be derived from a synergistic effect on a number of factors induced by the herbal medicine. Furthermore, an animal model confirmed that LR is able to accelerate wound healing on the flank back of the SD rats. Together these findings help to pinpoint the molecular basis of wound healing process induced by LR.
Anti-Inflammatory and Anticoagulative Effects of Paeonol on LPS-Induced Acute Lung Injury in Rats
Pin-Kuei Fu,Chieh-Liang Wu,Tung-Hu Tsai,Ching-Liang Hsieh
Evidence-Based Complementary and Alternative Medicine , 2012, DOI: 10.1155/2012/837513
Abstract: Paeonol is an active component of Moutan Cortex Radicis and is widely used as an analgesic, antipyretic, and anti-inflammatory agent in traditional Chinese medicine. We wanted to determine the role of paeonol in treating adult respiratory distress syndrome (ARDS). We established an acute lung injury (ALI) model in Sprague-Dawley rats, which was similar to ARDS in humans, using intratracheal administration of lipopolysaccharide (LPS). The intraperitoneal administration of paeonol successfully reduced histopathological scores and attenuated myeloperoxidase-reactive cells as an index of polymorphonuclear neutrophils infiltration and also reduces inducible nitric oxide synthase expression in the lung tissue, at 16 h after LPS administration. In addition, paeonol reduced proinflammatory cytokines in bronchoalveolar lavage fluid, including tumor-necrosis factor-, interleukin-1, interleukin-6, and plasminogen-activated inhibition factor-1. These results indicated that paeonol successfully attenuates inflammatory and coagulation reactions to protect against ALI.
HPLC–MS/MS Analysis of a Traditional Chinese Medical Formulation of Bu-Yang-Huan-Wu-Tang and Its Pharmacokinetics after Oral Administration to Rats
Lee-Hsin Shaw, Lie-Chwen Lin, Tung-Hu Tsai
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0043848
Abstract: Bu-yang-huan-wu-tang (BYHWT) is one of the most popular formulated traditional Chinese medicine prescriptions, and is widely for prevention of ischemic cardio-cerebral vascular diseases and stroke-induced disability. A specific high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) has been developed and validated for simultaneous quantification of the nine main bioactive components, i.e., astragaloside I, astragaloside II, astragaloside IV, formononetin, ononin, calycosin, calycosin-7-O-β-d-glucoside, ligustilide and paeoniflorin in rat plasma after oral administration of BYHWT extract. This method was applied to investigate the pharmacokinetics in conscious and freely moving rats. No significant matrix effects were observed. The overall analytical procedure was rapid and reproducible, which makes it suitable for quantitative analysis of a large number of samples. Among them, three astragalosides and four isoflavones in A. membranaceus, ligustilide in Radix Angelicae Sinensis and Rhizoma Ligustici Chuanxiong and paeoniflorin in Radix Paeoniae Rubra were identified. This developed method was then successfully applied to pharmacokinetic studies of the nine bioactive constituents after oral administration of BYHWT extracts in rats. The pharmacokinetic data demonstrated that astragaloside I, astragaloside II, astragaloside IV and ligustilide presented the phenomenon of double peaks. The other herbal ingredients of formononetin, ononin, calycosin, calycosin-7-O-β-d-glucoside and paeoniflorin appeared together in a single and plateau absorption phase. These phenomenona suggest that these components may have multiple absorption sites, regulation of enterohepatic circulation or the gastric emptying rate, or there is ingredient-ingredient interaction. These pharmacokinetic results provide a constructive contribution to better understand the absorption mechanism of BYHWT and to support additional clinical evaluation.
Pharmacokinetics of Dibutyl Phthalate (DBP) in the Rat Determined by UPLC-MS/MS
Li-Wen Chang,Mei-Ling Hou,Tung-Hu Tsai
International Journal of Molecular Sciences , 2013, DOI: 10.3390/ijms14010836
Abstract: Dibutyl phthalate (DBP) is commonly used to increase the ?exibility of plastics in industrial products. However, several plasticizers have been illegally used as clouding agents to increase dispersion of aqueous matrix in beverages. This study thus develops a rapid and validated analytical method by ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) for the evaluation of pharmacokinetics of DBP in free moving rats. The UPLC-MS/MS system equipped with positive electrospray ionization (ESI) source in multiple reaction monitoring (MRM) mode was used to monitor m/ z 279.25→148.93 transitions for DBP. The limit of quanti?cation for DBP in rat plasma and feces was 0.05 μg/mL and 0.125 μg/g, respectively. The pharmacokinetic results demonstrate that DBP appeared to have a two-compartment model in the rats; the area under concentration versus time (AUC) was 57.8 ± 5.93 min μg/mL and the distribution and elimination half-life (t 1/2,α and t 1/2,β) were 5.77 ± 1.14 and 217 ± 131 min, respectively, after DBP administration (30 mg/kg, i.v.). About 0.18% of the administered dose was recovered from the feces within 48 h. The pharmacokinetic behavior demonstrated that DBP was quickly degraded within 2 h, suggesting a rapid metabolism low fecal cumulative excretion in the rat.
Effect of Wasabi Component 6-(Methylsulfinyl)hexyl Isothiocyanate and Derivatives on Human Pancreatic Cancer Cells
Yu-Jen Chen,Yu-Chuen Huang,Tung-Hu Tsai,Hui-Fen Liao
Evidence-Based Complementary and Alternative Medicine , 2014, DOI: 10.1155/2014/494739
Abstract: The naturally occurring compound 6-(methylsulfinyl)hexyl isothiocyanate (6-MITC) was isolated from Wasabia japonica (Wasabi), a pungent spice used in Japanese food worldwide. The synthetic derivatives 6-(methylsulfenyl)hexyl isothiocyanate (I7447) and 6-(methylsulfonyl)hexyl isothiocyanate (I7557) are small molecule compounds derived from 6-MITC. This study aimed to evaluate the effect of these compounds on human pancreatic cancer cells. Human pancreatic cancer cell lines PANC-1 and BxPC-3 were used to perform an MTT assay for cell viability and Liu’s stain for morphological observation. The cell cycle was analyzed by DNA histogram. Aldehyde dehydrogenase (ALDH) activity was used as a marker for cancer stem cells (CSC). Western blotting was performed for the expression of proteins related to CSC signaling. The results showed that compounds 6-MITC and I7557, but not I7447, inhibited viability of both PANC-1 and BxPC-3 cells. Morphological observation showed mitotic arrest and apoptosis in 6-MITC- and I7557-treated cells. These two compounds induced G2/M phase arrest and hypoploid population. Percentages of ALDH-positive PANC-1 cells were markedly reduced by 6-MITC and I7557 treatment. The expression of CSC signaling molecule SOX2, but not NOTCH1, ABCG2, Sonic hedgehog, or OCT4, was inhibited by 6-MITC and I7557. In conclusion, wasabi compounds 6-MITC and I7557 may possess activity against the growth and CSC phenotypes of human pancreatic cancer cells. 1. Introduction The naturally occurring compound 6-(methylsulfinyl)hexyl isothiocyanate (6-MITC) was isolated from Wasabia japonica (wasabi), a pungent spice used in Japanese food worldwide. This compound has been reported as having anti-inflammatory [1], chemopreventive [2], and antimelanoma [3] activities. The synthetic compounds derived from 6-MITC include 6-(methylsulfenyl)hexyl isothiocyanate (I7447) and 6-(methylsulfonyl)hexyl isothiocyanate (I7557). Pancreatic cancer is a malignancy with increasing incidence and has been the fourth leading cause of cancer related death [4]. Due to the difficulty in making an early diagnosis, an unresectable stage at diagnosis in the majority, and resistance to chemotherapy or radiotherapy, the prognosis is poor with a 5-year survival rate of only 5–25% even after aggressive treatment [5]. It has been demonstrated that cancer stem cells (CSC) are crucial factors for treatment resistance and metastasis in many types of malignancies, including pancreatic cancer [6, 7]. Several signal transduction pathways involve the development and survival of CSC, such as Sonic
Identification of Multiple Ingredients for a Traditional Chinese Medicine Preparation (Bu-yang-huan-wu-tang) by Liquid Chromatography Coupled with Tandem Mass Spectrometry
Lee-Hsin Shaw,Wei-Ming Chen,Tung-Hu Tsai
Molecules , 2013, DOI: 10.3390/molecules180911281
Abstract: Bu-yang-huan-wu-tang (BYHWT) is a popular Traditional Chinese Medicine formula consisting of seven herbal medicines (Astragalus membranaceus, Angelica sinensis, Paeonia lactiflora, Ligusticum chuanxiong, Carthamus tinctorius, Amygdalus persica and Pheretima aspergillum), that has been used in China for centuries to overcome stroke-induced disability. To ensure the consistency of quality, a reliable analytical method is required, therefore, we developed a liquid chromatography with tandem mass spectrometry (LC-MS/MS) method for quantitative analysis of the major constituents in BYHWT. The herbal ingredients consisting of the cycloartane-type triterpene glycosides of astragaloside I, astragaloside II and astragaloside IV; isoflavones of formononetin, ononin calycosin, calycosin-7- O-β-d-glucoside; ligustilide and paeoniflorin were separated on a C18 column with gradient elution of methanol/10 mM ammonium acetate buffer–formic acid (100:0.1, v/v). This study was performed by a mass spectrometer using electrospray ionization (ESI) with positive ionization ions monitored in the multiple reaction-monitoring (MRM) mode. The linearity, accuracy, precision, limit of detection (LOD) and lower limit of quantification (LLOQ) were validated for this quantification method, and the sensitivity, reliability and reproducibility were all confirmed. The experiments provided a good method for analyzing BYHWT extracts. This study also quantitated the active components in various brands of commercially available products. The results indicated that the pharmaceutical industrial products of BYHWT exhibited considerable variation in their contents of the herbal compounds.
Chemical Analysis and Transplacental Transfer of Oseltamivir and Oseltamivir Carboxylic Acid in Pregnant Rats
Chia-Chun Lin, Jiin-Cherng Yen, Yu-Tse Wu, Lie-Chwen Lin, Tung-Hu Tsai
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0046062
Abstract: In view of the limited information on the pharmacokinetics of oseltamivir (OSE) during pregnancy, this study aims to evaluate the placental transportation of OSE and its active metabolite oseltamivir carboxylic acid (OCA) in rats. A validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) system coupled to an in vivo transplacental model has been developed to determine OSE and OCA in the placenta, amniotic fluids and fetus of 13-day pregnant Sprague-Dawley rats. Concentrations of OSE and OCA in plasma, amniotic fluids, placenta, and fetus were measured by the validated LC-MS/MS after OSE administration (10 mg/kg, iv). The pharmacokinetic data of both analytes were examined by non-compartmental modeling. The area under the concentration-time curve (AUC) of OCA in maternal plasma was found to be 3.6 times larger than that of OSE. The AUCs of OCA in both amniotic fluid and fetus were significantly decreased, in comparison with that in maternal plasma (reduced by 76.7 and 98.1%, respectively). We found that both OSE and OCA can penetrate the placenta, amniotic fluids and fetus in rats during pregnancy; however, the penetration of OCA was much lower than that of OSE. The mother-to-fetus transfer ratio was defined as AUCfetus/AUCmother. The data demonstrated that the mother-to-fetus transfer ratio of OSE and OCA were 1.64 and 0.019, respectively, suggesting that OSE, but not OCA, penetrated through the placenta. Moreover, OCA might not be easily metabolized in the fetus due to the lack of carboxylase in the fetus.
Page 1 /31143
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.