Abstract:
When a manufacturing firm has a plan to build a factory, the determination of the factory’s location site is one of the most important elements in the plan. Since the manufacturer does not have enough information of economic conditions of all potential location sites, the manufacturer cannot determine immediately its location site. A series of steps are taken to determine the location place. The firm makes range of searching area small step by step toward the site deter-mination; 1) Determination of a prospective region in a large space, 2) Selection of a potential area in that region, 3) Choice of an urban district in that area, 4) Decision of a site in the district. This paper proposes that chaotic phenome-non, which is appeared in the calculation processes to specify the optimal location site, may be used to identify a pro-spective region. And then, it is shown in the paper that the central place systems laid in the region play a role in the se-lection of a potential area for the factory location. This paper elucidates how a firm searches step by step an appropriate factory’s location within a large geographical area.

Abstract:
In this paper, we show a fixed point theorem which deduces to both of Lou’s fixed point theorem and de Pascale and de Pascale’s fixed point theorem. Moreover, our result can be applied to show the existence and uniqueness of solutions for fractional differential equations with multiple delays. Using the theorem, we discuss the fractional chaos neuron model.

Abstract:
Systemic lupus erythematosus (SLE: lupus) is a chronic complicated autoimmune disease and pathogenesis is still unclear. However, key cytokines have been recognized. Interferon (IFN)- and also IFN/ are of particular importance. Depending on the concept that lupus is a helper T(Th)1 disease and that dendritic cells (DCs) determine the direction of lupus, balance shift of Th1/Th2 and immunogenic/tolerogenic DCs is reviewed for therapy. (IFN)-- and IFN-/-targeted (gene) therapies are introduced. These consist of Th1/Th2 balance shift and elimination of IFN- and IFN--related cytokines such as (interleukin)IL-12 and IL-18. Other approaches include suppression of immunocompetent cells, normalization of abnormal T-cell function, costimulation blockade, B lymphocyte stimulator (Blys) blockade, and suppression of nephritic kidney inflammation. Moreover, balance shift of IFN-/ and tumor necrosis factor (TNF)- together with regulatory T(Treg) cells are briefely introduced. Clinical application will be discussed.

Abstract:
Sjögren's syndrome (SjS) is a chronic autoimmune disorder characterized by dry eyes and dry mouth due to dacryoadenitis and sialoadenitis with SS-A/Ro and/or SS-B/La autoantibodies in genetically predisposed individuals. Destruction of lacrimal and salivary glands by autoimmune reactions may lead to clinical manifestation. However, the mechanisms behind the decreased volume of secretions in tears and saliva are complex and are not fully understood. Exocrine gland dysfunction may precede autoimmunity (acquired immunity) or represent a process independent from inflammation in the pathogenesis of SjS. The preceded functional and morphologic changes of those tissues by nonimmunologic injury before the development of inflammation at the sites of target organs have been implicated. This paper focuses on the several factors and components relating to glandular dysfunction and morphologic changes by nonimmunologic injury during the preinflammatory phase in mouse model, including the factors which link between innate immunity and adaptive immunity.

Abstract:
A Poincar\'{e} gauge theory of (2+1)-dimensional gravity is developed. Fundamental gravitational field variables are dreibein fields and Lorentz gauge potentials, and the theory is underlain with the Riemann-Cartan space-time. The most general gravitational Lagrangian density, which is at most quadratic in curvature and torsion tensors and invariant under local Lorentz transformations and under general coordinate transformations, is given. Gravitational field equations are studied in detail, and solutions of the equations for weak gravitational fields are examined for the case with a static, \lq \lq spin"less point like source. We find, among other things, the following: (1)Solutions of the vacuum Einstein equation satisfy gravitational field equations in the vacuum in this theory. (2)For a class of the parameters in the gravitational Lagrangian density, the torsion is \lq \lq frozen" at the place where \lq \lq spin" density of the source field is not vanishing. In this case, the field equation actually agrees with the Einstein equation, when the source field is \lq \lq spin"less. (3)A teleparallel theory developed in a previous paper is \lq \lq included as a solution" in a limiting case. (4)A Newtonian limit is obtainable, if the parameters in the Lagrangian density satisfy certain conditions.

Abstract:
A black hole solution in a teleparallel theory of (2+1)-dimensional gravity, given in a previous paper, is examined. This solution is also a solution of the three-dimensional vacuum Einstein equation with a vanishing cosmological constant. Remarkable is the fact that this solution gives a black hole in a \lq \lq flat-land" in the Einstein theory and a Newtonian limit. Coordinate transformations to \lq \lq Minkowskian" coordinates, however, are singular not only at the origin, but also on the event horizon. {\em In the three-dimensional Einstein theory, vacuum regions of space-times can be locally non-trivial}.

Abstract:
In a teleparallel theory of (2+1)-dimensional gravity developed in a previous paper, we examine generators of internal Lorentz transformations and of general affine coordinate transformations for static circularly symmetric exact solutions of gravitational field equation. The \lq \lq spin" angular momentum, the energy-momentum and the \lq \lq extended orbital angular momentum" are explicitly given for each solution. Also, we give a critical comment on Deser's claim that neither momentum nor boosts are definable for finite energy solutions of three-dimensional Einstein gravity.

Abstract:
In the $\bar{\mbox{\rm Poincar\'{e}}}$ gauge theory of gravity, which has been formulated on the basis of a principal fiber bundle over the space-time manifold having the covering group of the proper orthochronous Poincar\'{e} group as the structure group, we examine the tensorial properties of the dynamical energy-momentum density ${}^{G}{\mathbf T}_{k}{}^{\mu}$ and the ` ` spin" angular momentum density ${}^{G}{\mathbf S}_{kl}{}^{\mu}$ of the gravitational field. They are both space-time vector densities, and transform as tensors under {\em global} $SL(2,C)$- transformations. Under {\em local} internal translation, ${}^{G}{\mathbf T}_{k}{}^{\mu}$ is invariant, while ${}^{G}{\mathbf S}_{kl}{}^{\mu}$ transforms inhomogeneously. The dynamical energy-momentum density ${}^{M}{\mathbf T}_{k}{}^{\mu}$ and the ` ` spin" angular momentum density ${}^{M}{\mathbf S}_{kl}{}^{\mu}$ of the matter field are also examined, and they are known to be space-time vector densities and to obey tensorial transformation rules under internal $\bar{\mbox{\rm Poincar\'{e}}}$ gauge transformations. The corresponding discussions in extended new general relativity which is obtained as a teleparallel limit of $\bar{\mbox{\rm Poincar\'{e}}}$ gauge theory are also given, and energy-momentum and ` ` spin" angular momentum densities are known to be well behaved. Namely, they are all space-time vector densities, etc. In both theories, integrations of these densities on a space-like surface give the total energy-momentum and {\em total} (={\em spin}+{\em orbital}) angular momentum for asymptotically flat space-time. The tensorial properties of canonical energy-momentum and ` ` extended orbital angular momentum" densities are also examined.

Abstract:
The Copenhagen interpretation is the most authorized interpretation of quantum mechanics, but there are a number of ideas that are associated with the Copenhagen interpretation. It is ceratin that this fact is not necessarily desirable. Thus, we propose a new interpretation of measurement theory, which is the linguistic aspect (or, the mathematical generalization) of quantum mechanics. Although this interpretation is superficially similar to a part of so-called Copenhagen interpretation, we show that it has a merit to be applicable to both quantum and classical systems. For example, we say that Bell’s inequality is broken even in classical systems.

Abstract:
Recently we proposed “a new interpretation of quantum mechanics (called quantum and classical measurement theory)” in this journal (JQIS: Vol. 1, No. 2), which was characterized as the metaphysical and linguistic turn of quantum mechanics. This turn from physics to language does not only realize the remarkable extension of quantum mechanics but also yield the quantum mechanical world view (i.e., the philosophy of quantum mechanics). And thus, the turn urges us to dream that traditional philosophies (i.e., Parmenides, Plato, Aristotle, Descartes, John Locke, Berkeley, Hume, Kant, Saussure, Wittgenstein, etc.) can be understood in the quantum mechanical world view. This dream will be challenged in this paper. We, of course, know that most scientists are skeptical to philosophy. Still, we can expect that readers find a good linguistic philosophy (i.e. philosophy of language) in quantum mechanics.