Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99


Any time

2019 ( 1 )

2017 ( 1 )

2016 ( 3 )

2015 ( 10 )

Custom range...

Search Results: 1 - 10 of 247 matches for " Staffan Bensch "
All listed articles are free for downloading (OA Articles)
Page 1 /247
Display every page Item
Sex-Biased Gene Expression on the Avian Z Chromosome: Highly Expressed Genes Show Higher Male-Biased Expression
Sara Naurin, Dennis Hasselquist, Staffan Bensch, Bengt Hansson
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0046854
Abstract: Dosage compensation, the process whereby expression of sex-linked genes remains similar between sexes (despite heterogamety) and balanced with autosomal expression, was long believed to be essential. However, recent research has shown that several lineages, including birds, butterflies, monotremes and sticklebacks, lack chromosome-wide dosage compensation mechanisms and do not completely balance the expression of sex-linked and autosomal genes. To obtain further understanding of avian sex-biased gene expression, we studied Z-linked gene expression in the brain of two songbirds of different genera (zebra finch, Taeniopygia guttata, and common whitethroat, Sylvia communis) using microarray technology. In both species, the male-bias in gene expression was significantly higher for Z than for autosomes, although the ratio of Z-linked to autosomal expression (Z:A) was relatively close to one in both sexes (range: 0.89–1.01). Interestingly, the Z-linked male-bias in gene expression increased with expression level, and genes with low expression showed the lowest degree of sex-bias. These results support the view that the heterogametic females have up-regulated their single Z-linked homologues to a high extent when the W-chromosome degraded and thereby managed to largely balance their Z:A expression with the exception of highly expressed genes. The male-bias in highly expressed genes points towards male-driven selection on Z-linked loci, and this and other possible hypotheses are discussed.
Postglacial Colonisation Patterns and the Role of Isolation and Expansion in Driving Diversification in a Passerine Bird
Bengt Hansson, Dennis Hasselquist, Maja Tarka, Pavel Zehtindjiev, Staffan Bensch
PLOS ONE , 2008, DOI: 10.1371/journal.pone.0002794
Abstract: Pleistocene glacial cycles play a major role in diversification and speciation, although the relative importance of isolation and expansion in driving diversification remains debated. We analysed mitochondrial DNA sequence data from 15 great reed warbler (Acrocephalus arundinaceus) populations distributed over the vast Eurasian breeding range of the species, and revealed unexpected postglacial expansion patterns from two glacial refugia. There were 58 different haplotypes forming two major clades, A and B. Clade A dominated in Western Europe with declining frequencies towards Eastern Europe and the Middle East, but showed a surprising increase in frequency in Western and Central Asia. Clade B dominated in the Middle East, with declining frequencies towards north in Central and Eastern Europe and was absent from Western Europe and Central Asia. A parsimonious explanation for these patterns is independent postglacial expansions from two isolated refugia, and mismatch distribution analyses confirmed this suggestion. Gene flow analyses showed that clade A colonised both Europe and Asia from a refugium in Europe, and that clade B expanded much later and colonised parts of Europe from a refugium in the Middle East. Great reed warblers in the eastern parts of the range have slightly paler plumage than western birds (sometimes treated as separate subspecies; A. a. zarudnyi and A. a. arundinaceus, respectively) and our results suggest that the plumage diversification took place during the easterly expansion of clade A. This supports the postglacial expansion hypothesis proposing that postglacial expansions drive diversification in comparatively short time periods. However, there is no indication of any (strong) reproductive isolation between clades and our data show that the refugia populations became separated during the last glaciation. This is in line with the Pleistocene speciation hypothesis invoking that much longer periods of time in isolation are needed for speciation to occur.
Estimating Heritabilities and Genetic Correlations: Comparing the ‘Animal Model’ with Parent-Offspring Regression Using Data from a Natural Population
Mikael ?kesson, Staffan Bensch, Dennis Hasselquist, Maja Tarka, Bengt Hansson
PLOS ONE , 2008, DOI: 10.1371/journal.pone.0001739
Abstract: Quantitative genetic parameters are nowadays more frequently estimated with restricted maximum likelihood using the ‘animal model’ than with traditional methods such as parent-offspring regressions. These methods have however rarely been evaluated using equivalent data sets. We compare heritabilities and genetic correlations from animal model and parent-offspring analyses, respectively, using data on eight morphological traits in the great reed warbler (Acrocephalus arundinaceus). Animal models were run using either mean trait values or individual repeated measurements to be able to separate between effects of including more extended pedigree information and effects of replicated sampling from the same individuals. We show that the inclusion of more pedigree information by the use of mean traits animal models had limited effect on the standard error and magnitude of heritabilities. In contrast, the use of repeated measures animal model generally had a positive effect on the sampling accuracy and resulted in lower heritabilities; the latter due to lower additive variance and higher phenotypic variance. For most trait combinations, both animal model methods gave genetic correlations that were lower than the parent-offspring estimates, whereas the standard errors were lower only for the mean traits animal model. We conclude that differences in heritabilities between the animal model and parent-offspring regressions were mostly due to the inclusion of individual replicates to the animal model rather than the inclusion of more extended pedigree information. Genetic correlations were, on the other hand, primarily affected by the inclusion of more pedigree information. This study is to our knowledge the most comprehensive empirical evaluation of the performance of the animal model in relation to parent-offspring regressions in a wild population. Our conclusions should be valuable for reconciliation of data obtained in earlier studies as well as for future meta-analyses utilizing estimates from both traditional methods and the animal model.
Individual Identification and Genetic Variation of Lions (Panthera leo) from Two Protected Areas in Nigeria
Talatu Tende, Bengt Hansson, Ulf Ottosson, Mikael ?kesson, Staffan Bensch
PLOS ONE , 2014, DOI: 10.1371/journal.pone.0084288
Abstract: This survey was conducted in two protected areas in Nigeria to genetically identify individual lions and to determine the genetic variation within and between the populations. We used faecal sample DNA, a non-invasive alternative to the risky and laborious task of taking samples directly from the animals, often preceded by catching and immobilization. Data collection in Yankari Game Reserve (YGR) spanned through a period of five years (2008 –2012), whereas data in Kainji Lake National Park (KLNP) was gathered for a period of three years (2009, 2010 and 2012). We identified a minimum of eight individuals (2 males, 3 females, 3 unknown) from YGR and a minimum of ten individuals (7 males, 3 females) from KLNP. The two populations were found to be genetically distinct as shown by the relatively high fixation index (FST = 0.17) with each population exhibiting signs of inbreeding (YGR FIS = 0.49, KLNP FIS = 0.38). The genetic differentiation between the Yankari and Kainji lions is assumed to result from large spatial geographic distance and physical barriers reducing gene flow between these two remaining wild lion populations in Nigeria. To mitigate the probable inbreeding depression in the lion populations within Nigeria it might be important to transfer lions between parks or reserves or to reintroduce lions from the zoos back to the wild.
Malaria-Infected Female Collared Flycatchers (Ficedula albicollis) Do Not Pay the Cost of Late Breeding
Katarzyna Kulma, Matthew Low, Staffan Bensch, Anna Qvarnstr?m
PLOS ONE , 2014, DOI: 10.1371/journal.pone.0085822
Abstract: Life-history theory predicts that the trade-off between parasite defense and other costly traits such as reproduction may be most evident when resources are scarce. The strength of selection that parasites inflict on their host may therefore vary across environmental conditions. Collared flycatchers (Ficedula albicollis) breeding on the Swedish island ?land experience a seasonal decline in their preferred food resource, which opens the possibility to test the strength of life-history trade-offs across environmental conditions. We used nested-PCR and quantitative-PCR protocols to investigate the association of Haemosporidia infection with reproductive performance of collared flycatcher females in relation to a seasonal change in the external environment. We show that despite no difference in mean onset of breeding, infected females produced relatively more of their fledglings late in the season. This pattern was also upheld when considering only the most common malaria lineage (hPHSIB1), however there was no apparent link between the reproductive output and the intensity of infection. Infected females produced heavier-than-average fledglings with higher-than-expected recruitment success late in the season. This reversal of the typical seasonal trend in reproductive output compensated them for lower fledging and recruitment rates compared to uninfected birds earlier in the season. Thus, despite different seasonal patterns of reproductive performance the overall number of recruits was the same for infected versus uninfected birds. A possible explanation for our results is that infected females breed in a different microhabitat where food availability is higher late in the season but also is the risk of infection. Thus, our results suggest that another trade-off than the one we aimed to test is more important for explaining variation in reproductive performance in this natural population: female flycatchers appear to face a trade-off between the risk of infection and reproductive success late in the season.
The sex-biased brain: sexual dimorphism in gene expression in two species of songbirds
Sara Naurin, Bengt Hansson, Dennis Hasselquist, Yong-Hwan Kim, Staffan Bensch
BMC Genomics , 2011, DOI: 10.1186/1471-2164-12-37
Abstract: We have studied the extent of sexual dimorphism in gene expression in the brain of two species of songbirds, the zebra finch (Taeniopygia guttata) and the common whitethroat (Sylvia communis), using large-scale microarray technology. Sexual dimorphism in gene expression was extensive in both species, and predominantly sex-linked: most genes identified were male-biased and Z-linked. Interestingly, approximately 50% of the male-biased Z-linked genes were sex-biased only in one of the study species.Our results corroborate the results of recent studies in chicken and zebra finch which have been interpreted as caused by a low degree of dosage compensation in female birds (i.e. the heterogametic sex). Moreover, they suggest that zebra finches and common whitethroats dosage compensate partly different sets of genes on the Z chromosome. It is possible that this pattern reflects differences in either the essentiality or the level of sexual antagonism of these genes in the respective species. Such differences might correspond to genes with different rates of evolution related to sexual dimorphism in the avian brain, and might therefore be correlated with differences between the species in sex-specific behaviours.Sexual dimorphism, i.e. systematic differences between the sexes within a species, is a well known phenomenon that occurs in most taxa. Some of the more conspicuous examples of sexual dimorphism are the appearance of miniature parasitic males in anglerfish, the tail of the peacock, and the song of the male nightingale (reviewed in [1]). Sexual dimorphism occurs even though the sexes have virtually identical DNA sequences. Hence, sexual dimorphism must in most cases arise due to mechanisms involving gene regulation and gene expression [2,3]. In line with this, a high degree of sex-biased gene expression is a common feature in many different species [3-12].Sex-biased genes evolve rapidly, both in terms of their DNA sequence and in their gene expression profiles [5,13-19
Population genetic structure in the paddyfield warbler (Acrocephalus agricola Jerd.)
Current Zoology , 2011,
Abstract: Population genetic structure was studied in paddyfield warblers Acrocephalus agricola breeding in NE Bulgaria, SE Russia and S Kazakhstan. We were particularly interested in the degree of genetic differentiation and gene flow of the Bulgarian population due to its geographical isolation, recent origin and unique migratory strategy. Analyses of mitochondrial DNA (mtDNA) showed that there was no divergence between Bulgarian and Russian populations (FST = 0.007), whereas those in Kazakhstan differed significantly from the European breeding populations (Russia: FST = 0.058; Bulgaria: FST = 0.114). The degree of differentiation between populations at nuclear markers (five microsatellite loci; FST ≈ 0) was weaker than for mtDNA. We suggest that this relatively weak differentiation over the range of this species reflects a recent postglacial expansion, and results from mismatch distribution analyses and Fu’s FS tests are in agreement. Preservation of small and geographically isolated populations which may contain individuals with unique adaptive traits, such as the studied Bulgarian population of paddyfield warbler, is valuable for the long-term conservation of expanding migratory bird species [Current Zoology 57 (1): 63–71, 2011].
Annual Cycle and Migration Strategies of a Trans-Saharan Migratory Songbird: A Geolocator Study in the Great Reed Warbler
Hilger W. Lemke, Maja Tarka, Raymond H. G. Klaassen, Mikael ?kesson, Staffan Bensch, Dennis Hasselquist, Bengt Hansson
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0079209
Abstract: Recent technological advancements now allow us to obtain geographical position data for a wide range of animal movements. Here we used light-level geolocators to study the annual migration cycle in great reed warblers (Acrocephalus arundinaceus), a passerine bird breeding in Eurasia and wintering in sub-Saharan Africa. We were specifically interested in seasonal strategies in routes and schedules of migration. We found that the great reed warblers (all males, no females were included) migrated from the Swedish breeding site in early August. After spending up to three weeks at scattered stopover sites in central to south-eastern Europe, they resumed migration and crossed the Mediterranean Sea and Sahara Desert without lengthy stopovers. They then spread out over a large overwintering area and each bird utilised two (or even three) main wintering sites that were spatially separated by a distinct mid-winter movement. Spring migration initiation date differed widely between individuals (1-27 April). Several males took a more westerly route over the Sahara in spring than in autumn, and in general there were fewer long-distance travels and more frequent shorter stopovers, including one in northern Africa, in spring. The shorter stopovers made spring migration on average faster than autumn migration. There was a strong correlation between the spring departure dates from wintering sites and the arrival dates at the breeding ground. All males had a high migration speed in spring despite large variation in departure dates, indicating a time-minimization strategy to achieve an early arrival at the breeding site; the latter being decisive for high reproductive success in great reed warblers. Our results have important implications for the understanding of long-distance migrants’ ability to predict conditions at distant breeding sites and adapt to rapid environmental change.
Allelic Variation in a Willow Warbler Genomic Region Is Associated with Climate Clines
Keith W. Larson, Miriam Liedvogel, BriAnne Addison, Oddmund Kleven, Terje Laskemoen, Jan T. Lifjeld, Max Lundberg, Susanne ?kesson, Staffan Bensch
PLOS ONE , 2014, DOI: 10.1371/journal.pone.0095252
Abstract: Local adaptation is an important process contributing to population differentiation which can occur in continuous or isolated populations connected by various amounts of gene flow. The willow warbler (Phylloscopus trochilus) is one of the most common songbirds in Fennoscandia. It has a continuous breeding distribution where it is found in all forested habitats from sea level to the tree line and therefore constitutes an ideal species for the study of locally adapted genes associated with environmental gradients. Previous studies in this species identified a genetic marker (AFLP-WW1) that showed a steep north-south cline in central Sweden with one allele associated with coastal lowland habitats and the other with mountainous habitats. It was further demonstrated that this marker is embedded in a highly differentiated chromosome region that spans several megabases. In the present study, we sampled 2,355 individuals at 128 sites across all of Fennoscandia to study the geographic and climatic variables associated with the allele frequency distributions of WW1. Our results demonstrate that 1) allele frequency patterns significantly differ between mountain and lowland populations, 2) these allele differences coincide with extreme temperature conditions and the short growing season in the mountains, and milder conditions in coastal areas, and 3) the northern-allele or “altitude variant” of WW1 occurs in willow warblers that occupy mountainous habitat regardless of subspecies. Finally these results suggest that climate may exert selection on the genomic region associated with these alleles and would allow us to develop testable predictions for the distribution of the genetic marker based on climate change scenarios.
Genetic and Morphometric Divergence of an Invasive Bird: The Introduced House Sparrow (Passer domesticus) in Brazil
Marcos R. Lima, Regina H. F. Macedo, Thaís L. F. Martins, Aaron W. Schrey, Lynn B. Martin, Staffan Bensch
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0053332
Abstract: Introduced species are interesting systems for the study of contemporary evolution in new environments because of their spatial and temporal scales. For this study we had three aims: (i) to determine how genetic diversity and genetic differentiation of introduced populations of the house sparrow (Passer domesticus) in Brazil varies with range expansion, (ii) to determine how genetic diversity and differentiation in Brazil compares to ancestral European populations; and (iii) to determine whether selection or genetic drift has been more influential on phenotypic divergence. We used six microsatellite markers to genotype six populations from Brazil and four populations from Europe. We found slightly reduced levels of genetic diversity in Brazilian compared to native European populations. However, among introduced populations of Brazil, we found no association between genetic diversity and time since introduction. Moreover, overall genetic differentiation among introduced populations was low indicating that the expansion took place from large populations in which genetic drift effects would likely have been weak. We found significant phenotypic divergence among sites in Brazil. Given the absence of a spatial genetic pattern, divergent selection and not genetic drift seems to be the main force behind most of the phenotypic divergence encountered. Unravelling whether microevolution (e.g., allele frequency change), phenotypic plasticity, or both mediated phenotypic divergence is challenging and will require experimental work (e.g., common garden experiments or breeding programs).
Page 1 /247
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.