显示搜索
我的图书馆
OALib Journal期刊
ISSN: 2333-9721
费用:99美元
投稿
时间不限
2017 ( 1 )
2016 ( 2 )
2015 ( 8 )
2014 ( 7 )
自定义范围…
In a translucent network scenario, development of an optical control plane (OCP) that is aware of the location and number of available regenerators and all-optical wavelength converters (AOWCs) is of paramount importance. However, current generalized multiprotocol label switching (GMPLS) protocol suite does not consider the distribution of regenerator and AOWC availability information to all the network nodes. In this paper, we propose a novel optical control plane (OCP) architecture that 1) disseminates information about network components (i.e. regenerators and AOWCs) to all the network nodes, and 2) evaluates candidate routes which use fewest amounts of network components. Performance of the proposed OCP is compared with a recently proposed hybrid OCP approach in terms of blocking performance, number of deployed components and lightpath establishment setup times. The obtained simulation results show that the proposed OCP approach demonstrates low connection blocking and establishes lightpaths by 1) minimizing the overall network cost owing to the deployment of minimum total number of network components, and 2) demonstrating acceptable lightpath establishment setup times at all traffic loads. Further, the proposed OCP methodology is compatible and suitable for controlling the operations of a novel electro-optical hybrid translucent node which is a latency efficient technology capable of delivering a cost effective implementation suitable for large scale deployment.
The Network Layer in wireless mesh networks is responsible for routing packets making it a prime target for intruders and hackers. Black-hole attack is a type of denial-of-service attack which when carried out can disrupt the services of this layer. This paper takes a look at some important detection and mitigation techniques and presents the drawbacks. After analysis of current mechanisms, the paper proposes RID-AODV, a security solution for multiple black-hole attack in wireless mesh networks. Based on the backbone of AODV, RID-AODV combines the ability of route skipping of IDSAODV and route failure correction using reverse route establishment of RAODV. The enhanced protocol RID-AODV, AODV, IDSAODV, and RAODV are implemented in a simulated environment using ns-2.35 simulator. The networks for each protocol are bombarded with up to ten black-hole nodes starting from zero. The results obtained are then analyzed and compared and a discussion is presented.