Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99


Any time

2020 ( 3 )

2019 ( 217 )

2018 ( 292 )

2017 ( 305 )

Custom range...

Search Results: 1 - 10 of 230224 matches for " Sean R. Anderson "
All listed articles are free for downloading (OA Articles)
Page 1 /230224
Display every page Item
Slow Light with Photonic Crystals for On-Chip Optical Interconnects
Sean P. Anderson,Ashutosh R. Shroff,Philippe M. Fauchet
Advances in Optical Technologies , 2008, DOI: 10.1155/2008/293531
Abstract: Transistor scaling alone can no longer be relied upon to yield the exponential speed increases we have come to expect from the microprocessor industry. The principle reason for this is the interconnect bottleneck, where the electrical connections between and within microprocessors are becoming, and in some cases have already become, the limiting factor in overall microprocessor performance. Optical interconnects have the potential to address this shortcoming directly, by providing an inter- and intrachip communication infrastructure that has both greater bandwidth and lower latency than electrical interconnects, while remaining safely within size and power constraints. In this paper, we review the requirements that a successful optical interconnect must meet, as well as some of the recent work in our group in the area of slow-light photonic crystal devices for on-chip optical interconnects. We show that slow-light interferometric optical modulators in photonic crystal can have not only high bandwidth, but also extremely compact size. We also introduce the first example of a multichannel slow light platform, upon which a new class of ultracompact optical devices can be built.
An Internal Model Architecture for Novelty Detection: Implications for Cerebellar and Collicular Roles in Sensory Processing
Sean R. Anderson, John Porrill, Martin J. Pearson, Anthony G. Pipe, Tony J. Prescott, Paul Dean
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0044560
Abstract: The cerebellum is thought to implement internal models for sensory prediction, but details of the underlying circuitry are currently obscure. We therefore investigated a specific example of internal-model based sensory prediction, namely detection of whisker contacts during whisking. Inputs from the vibrissae in rats can be affected by signals generated by whisker movement, a phenomenon also observable in whisking robots. Robot novelty-detection can be improved by adaptive noise-cancellation, in which an adaptive filter learns a forward model of the whisker plant that allows the sensory effects of whisking to be predicted and thus subtracted from the noisy sensory input. However, the forward model only uses information from an efference copy of the whisking commands. Here we show that the addition of sensory information from the whiskers allows the adaptive filter to learn a more complex internal model that performs more robustly than the forward model, particularly when the whisking-induced interference has a periodic structure. We then propose a neural equivalent of the circuitry required for adaptive novelty-detection in the robot, in which the role of the adaptive filter is carried out by the cerebellum, with the comparison of its output (an estimate of the self-induced interference) and the original vibrissal signal occurring in the superior colliculus, a structure noted for its central role in novelty detection. This proposal makes a specific prediction concerning the whisker-related functions of a region in cerebellar cortical zone A2 that in rats receives climbing fibre input from the superior colliculus (via the inferior olive). This region has not been observed in non-whisking animals such as cats and primates, and its functional role in vibrissal processing has hitherto remained mysterious. Further investigation of this system may throw light on how cerebellar-based internal models could be used in broader sensory, motor and cognitive contexts.
Fetal Adrenal Demedullation Lowers Circulating Norepinephrine and Attenuates Growth Restriction but not Reduction of Endocrine Cell Mass in an Ovine Model of Intrauterine Growth Restriction
Melissa A. Davis,Antoni R. Macko,Leah V. Steyn,Miranda J. Anderson,Sean W. Limesand
Nutrients , 2015, DOI: 10.3390/nu7010500
Abstract: Placental insufficiency is associated with fetal hypoglycemia, hypoxemia, and elevated plasma norepinephrine (NE) that become increasingly pronounced throughout the third trimester and contribute to intrauterine growth restriction (IUGR). This study evaluated the effect of fetal adrenal demedullation (AD) on growth and pancreatic endocrine cell mass. Placental insufficiency-induced IUGR was created by exposing pregnant ewes to elevated ambient temperatures during mid-gestation. Treatment groups consisted of control and IUGR fetuses with either surgical sham or AD at 98 days gestational age (dGA; term = 147 dGA), a time-point that precedes IUGR. Samples were collected at 134 dGA. IUGR-sham fetuses were hypoxemic, hypoglycemic, and hypoinsulinemic, and values were similar in IUGR-AD fetuses. Plasma NE concentrations were ~5-fold greater in IUGR-sham compared to control-sham, control-AD, and IUGR-AD fetuses. IUGR-sham and IUGR-AD fetuses weighed less than controls. Compared to IUGR-sham fetuses, IUGR-AD fetuses weighed more and asymmetrical organ growth was absent. Pancreatic β-cell mass and α-cell mass were lower in both IUGR-sham and IUGR-AD fetuses compared to controls, however, pancreatic endocrine cell mass relative to fetal mass was lower in IUGR-AD fetuses. These findings indicate that NE, independently of hypoxemia, hypoglycemia and hypoinsulinemia, influence growth and asymmetry of growth but not pancreatic endocrine cell mass in IUGR fetuses.
Estimates of carbon stored in harvested wood products from the United States forest service northern region, 1906-2010
Keith D Stockmann, Nathaniel M Anderson, Kenneth E Skog, Sean P Healey, Dan R Loeffler, Greg Jones, James F Morrison
Carbon Balance and Management , 2012, DOI: 10.1186/1750-0680-7-1
Abstract: Based on the IPCC approach, carbon stocks in the HWP pool were increasing at one million megagrams of carbon (MgC) per year in the mid 1960s, with peak cumulative storage of 28 million MgC occurring in 1995. Net positive flux into the HWP pool over this period is primarily attributable to high harvest levels in the mid twentieth century. Harvest levels declined after 1970, resulting in less carbon entering the HWP pool. Since 1995, emissions from HWP at solid waste disposal sites have exceeded additions from harvesting, resulting in a decline in the total amount of carbon stored in the HWP pool. The CFPP approach shows a similar trend, with 100-year average carbon storage for each annual Northern Region harvest peaking in 1969 at 937,900 MgC, and fluctuating between 84,000 and 150,000 MgC over the last decade.The Northern Region HWP pool is now in a period of negative net annual stock change because the decay of products harvested between 1906 and 2010 exceeds additions of carbon to the HWP pool through harvest. However, total forest carbon includes both HWP and ecosystem carbon, which may have increased over the study period. Though our emphasis is on the Northern Region, we provide a framework by which the IPCC and CFPP methods can be applied broadly at sub-national scales to other regions, land management units, or firms.Recent estimates of net annual storage, or flux, indicate that the world's forests are an important carbon sink, removing more carbon from the atmosphere through photosynthesis than they emit through combustion and decay [1]. The forest sector of the United States (US) stored about 48,437 teragrams of carbon (TgC) in 2010 [2], or the equivalent of about 30 years of US fossil fuel emissions at the 2008 rate. The US Environmental Protection Agency (EPA) estimates that in 2010 net additions to ecosystem and harvested wood products (HWP) pools were 235 TgC yr-1 [2]. Thus, US forests function as a carbon sink, annually offsetting about 15 percent of t
Drift-Diffusion Analysis of Neutrophil Migration during Inflammation Resolution in a Zebrafish Model
Geoffrey R. Holmes,Giles Dixon,Sean R. Anderson,Constantino Carlos Reyes-Aldasoro,Philip M. Elks,Stephen A. Billings,Moira K. B. Whyte,Visakan Kadirkamanathan,Stephen A. Renshaw
Advances in Hematology , 2012, DOI: 10.1155/2012/792163
Abstract: Neutrophils must be removed from inflammatory sites for inflammation to resolve. Recent work in zebrafish has shown neutrophils can migrate away from inflammatory sites, as well as die in situ. The signals regulating the process of reverse migration are of considerable interest, but remain unknown. We wished to study the behaviour of neutrophils during reverse migration, to see whether they moved away from inflamed sites in a directed fashion in the same way as they are recruited or whether the inherent random component of their migration was enough to account for this behaviour. Using neutrophil-driven photoconvertible Kaede protein in transgenic zebrafish larvae, we were able to specifically label neutrophils at an inflammatory site generated by tailfin transection. The locations of these neutrophils over time were observed and fitted using regression methods with two separate models: pure-diffusion and drift-diffusion equations. While a model hypothesis test (the F-test) suggested that the datapoints could be fitted by the drift-diffusion model, implying a fugetaxis process, dynamic simulation of the models suggested that migration of neutrophils away from a wound is better described by a zero-drift, “diffusion” process. This has implications for understanding the mechanisms of reverse migration and, by extension, neutrophil retention at inflammatory sites. 1. Introduction The fate of neutrophils following completion of the inflammatory programme is of critical importance for the outcome of episodes of acute inflammation and can determine whether there is prompt healing of a wound or the development of chronic inflammation and tissue injury. Neutrophils recruited to sites of inflammation may leave the site or die in situ [1]. The most widely accepted mechanism of neutrophil disposal is the programmed cell death or apoptosis, of the neutrophil followed by macrophage uptake and clearance (reviewed in [2]). Recently, other routes have been proposed; neutrophils may move away from the inflamed site into the bloodstream (“reverse transmigration” [3]), by migration through other tissues (“retrograde chemotaxis” or “reverse migration” [4–6]), or be lost into the inflammatory exudate [7, 8]. Current understanding of the process of reverse migration is reviewed elsewhere [9]. The uncertainty as to the in vivo fates of individual cells relates in part to the difficulty in following individual cells during inflammation resolution in vivo. The transgenic zebrafish model is emerging as a key model for the study of vertebrate immunity [10] and allows direct
The Neutrophil's Eye-View: Inference and Visualisation of the Chemoattractant Field Driving Cell Chemotaxis In Vivo
Visakan Kadirkamanathan, Sean R. Anderson, Stephen A. Billings, Xiliang Zhang, Geoffrey R. Holmes, Constantino C. Reyes-Aldasoro, Philip M. Elks, Stephen A. Renshaw
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0035182
Abstract: As we begin to understand the signals that drive chemotaxis in vivo, it is becoming clear that there is a complex interplay of chemotactic factors, which changes over time as the inflammatory response evolves. New animal models such as transgenic lines of zebrafish, which are near transparent and where the neutrophils express a green fluorescent protein, have the potential to greatly increase our understanding of the chemotactic process under conditions of wounding and infection from video microscopy data. Measurement of the chemoattractants over space (and their evolution over time) is a key objective for understanding the signals driving neutrophil chemotaxis. However, it is not possible to measure and visualise the most important contributors to in vivo chemotaxis, and in fact the understanding of the main contributors at any particular time is incomplete. The key insight that we make in this investigation is that the neutrophils themselves are sensing the underlying field that is driving their action and we can use the observations of neutrophil movement to infer the hidden net chemoattractant field by use of a novel computational framework. We apply the methodology to multiple in vivo neutrophil recruitment data sets to demonstrate this new technique and find that the method provides consistent estimates of the chemoattractant field across the majority of experiments. The framework that we derive represents an important new methodology for cell biologists investigating the signalling processes driving cell chemotaxis, which we label the neutrophils eye-view of the chemoattractant field.
A molecular map of mesenchymal tumors
Stephen R Henderson, David Guiliano, Nadege Presneau, Sean McLean, Richard Frow, Sonja Vujovic, John Anderson, Neil Sebire, Jeremy Whelan, Nick Athanasou, Adrienne M Flanagan, Chris Boshoff
Genome Biology , 2005, DOI: 10.1186/gb-2005-6-9-r76
Abstract: We have undertaken a broad and comprehensive study of the gene expression profile of 96 tumors with representatives of all mesenchymal tissues, including several problem diagnostic groups. Using machine learning methods adapted to this problem we identify molecular fingerprints for most tumors, which are pathognomonic (decisive) and biologically revealing.We demonstrate the utility of gene expression profiles and machine learning for a complex clinical problem, and identify putative origins for certain mesenchymal tumors.Tumors of bone and soft tissue are a wide spectrum of benign and malignant neoplasms (sarcoma) derived from mesenchymal precursor cells (hereafter referred to as mesenchymal tumors) [1,2]. Many show heterogeneous patterns of differentiation or exhibit little similarity to differentiated mesenchymal tissues, while others have diverse cellular morphology (pleomorphism). Thus, specialist expertise is required for diagnosis as the histopathology of mesenchymal tumors is often overlapping or indistinct. With the introduction of neo-adjuvant cytotoxic therapies, diagnosis has become even more challenging as pathologists must rely increasingly upon needle core biopsies that produce only small quantities of tissue for immunohistochemistry and histopathological diagnosis. Furthermore, molecular therapies have been developed targeting oncogenic pathways that may transcend the current histopathological categories.The discovery of definitive oncogenic gene fusions for certain mesenchymal tumors has aided pathologists greatly. These include the EWS-ERG or EWS-FLI1 fusion transcripts for Ewing's sarcoma (EWS) [3-5], or the SYT-SSX fusion transcript for synovial sarcoma [6,7]. Also, reverse transcriptase polymerase chain reaction (RT-PCR) has become the gold standard for diagnosis. These 'simple sarcomas' are ideal candidates for targeted therapy, with relatively stable karyotypes and stereotypical molecular pathology [8]. Nonetheless, chromosomal translocations a
A First Look at White Dwarf - M Dwarf Pairs in the Sloan Digital Sky Survey (SDSS)
Sean N. Raymond,Paula Szkody,Suzanne L. Hawley,Scott F. Anderson,J. Brinkman,Kevin R. Covey,P. M. McGehee,D. P. Schneider,Andrew A. West,D. G. York
Physics , 2003, DOI: 10.1086/374762
Abstract: We have identified 109 White Dwarf (WD) - M dwarf pairs in the Sloan Digital Sky Survey (SDSS) with g < 20th magnitude. For each system we determined the temperature of the WD primary and the spectral type of the M dwarf secondary. Using H-alpha emission as a proxy for the chromospheric activity level of the M dwarf, we investigated correlations between the activity level and properties of the system. Compared with field M dwarfs (Hawley et al. 1996), we see a slightly higher active fraction of early-type stars, with activity levels similar to the field. We have conducted followup observations at the ARC 3.5m telescope to obtain radial velocity information and to search for short period binaries, which may be on the verge of interacting. We report on one system with a 4.1 hour period, and several additional systems with significant velocity variations.
Dark Matter with Time-Dependent Mass
Greg W. Anderson,Sean M. Carroll
Physics , 1997,
Abstract: We propose a simple model in which the cosmological dark matter consists of particles whose mass increases with the scale factor of the universe. The particle mass is generated by the expectation value of a scalar field which does not have a stable vacuum state, but which is effectively stabilized by the rest energy of the ambient particles. As the universe expands, the density of particles decreases, leading to an increase in the vacuum expectation value of the scalar (and hence the mass of the particle). The energy density of the coupled system of variable-mass particles (``vamps'') redshifts more slowly than that of ordinary matter. Consequently, the age of the universe is larger than in conventional scenarios.
NAK for Ext and Ascent of module structures
Benjamin J. Anderson,Sean Sather-Wagstaff
Mathematics , 2012,
Abstract: We investigate the interplay between properties of Ext modules and ascent of module structures along local ring homomorphisms. Specifically, let f: (R,m,k) -> (S,mS,k) be a flat local ring homomorphism. We show that if M is a finitely generated R-module such that Ext^i(S,M) satisfies NAK (e.g. if Ext^i(S,M) is finitely generated over S) for i=1,...,dim_R(M), then Ext^i(S,M)=0 for all i\neq 0 and M has an S-module structure that is compatible with its R-module structure via f. We provide explicit computations of Ext^1(S,M) to indicate how large it can be when M does not have a compatible S-module structure.
Page 1 /230224
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.