Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99


Any time

2019 ( 22 )

2018 ( 22 )

2017 ( 24 )

2016 ( 27 )

Custom range...

Search Results: 1 - 10 of 9127 matches for " Sara Lindstrom equal contributor "
All listed articles are free for downloading (OA Articles)
Page 1 /9127
Display every page Item
Fine-Mapping the HOXB Region Detects Common Variants Tagging a Rare Coding Allele: Evidence for Synthetic Association in Prostate Cancer
Edward J. Saunders,Tokhir Dadaev,Daniel A. Leongamornlert,Sarah Jugurnauth-Little,Malgorzata Tymrakiewicz,Fredrik Wiklund,Ali Amin Al Olama,Sara Benlloch,David E. Neal equal contributor,Freddie C. Hamdy equal contributor,Jenny L. Donovan equal contributor,Graham G. Giles equal contributor,Gianluca Severi equal contributor,Henrik Gronberg equal contributor,Markus Aly equal contributor,Christopher A. Haiman equal contributor,Fredrick Schumacher equal contributor,Brian E. Henderson equal contributor,Sara Lindstrom equal contributor,Peter Kraft equal contributor,David J. Hunter equal contributor,Susan Gapstur equal contributor,Stephen Chanock equal contributor,Sonja I. Berndt equal contributor,Demetrius Albanes equal contributor,Gerald Andriole equal contributor,Johanna Schleutker equal contributor,Maren Weischer equal contributor,B?rge G. Nordestgaard equal contributor,Federico Canzian equal contributor,Daniele Campa equal contributor,Elio Riboli equal contributor,Tim J. Key equal contributor,Ruth C. Travis equal contributor,Sue A. Ingles equal contributor,Esther M. John equal contributor,Richard B. Hayes equal contributor,Paul Pharoah equal contributor,Kay-Tee Khaw equal contributor,Janet L. Stanford equal contributor,Elaine A. Ostrander equal contributor,Lisa B. Signorello equal contributor,Stephen N. Thibodeau equal contributor,Daniel Schaid equal contributor,Christiane Maier equal contributor,Adam S. Kibel equal contributor,Cezary Cybulski equal contributor
PLOS Genetics , 2014, DOI: doi/10.1371/journal.pgen.1004129
Abstract: The HOXB13 gene has been implicated in prostate cancer (PrCa) susceptibility. We performed a high resolution fine-mapping analysis to comprehensively evaluate the association between common genetic variation across the HOXB genetic locus at 17q21 and PrCa risk. This involved genotyping 700 SNPs using a custom Illumina iSelect array (iCOGS) followed by imputation of 3195 SNPs in 20,440 PrCa cases and 21,469 controls in The PRACTICAL consortium. We identified a cluster of highly correlated common variants situated within or closely upstream of HOXB13 that were significantly associated with PrCa risk, described by rs117576373 (OR 1.30, P = 2.62×10?14). Additional genotyping, conditional regression and haplotype analyses indicated that the newly identified common variants tag a rare, partially correlated coding variant in the HOXB13 gene (G84E, rs138213197), which has been identified recently as a moderate penetrance PrCa susceptibility allele. The potential for GWAS associations detected through common SNPs to be driven by rare causal variants with higher relative risks has long been proposed; however, to our knowledge this is the first experimental evidence for this phenomenon of synthetic association contributing to cancer susceptibility.
Identification of a Genomic Reservoir for New TRIM Genes in Primate Genomes
Kyudong Han equal contributor,Dianne I. Lou equal contributor,Sara L. Sawyer
PLOS Genetics , 2011, DOI: 10.1371/journal.pgen.1002388
Abstract: Tripartite Motif (TRIM) ubiquitin ligases act in the innate immune response against viruses. One of the best characterized members of this family, TRIM5α, serves as a potent retroviral restriction factor with activity against HIV. Here, we characterize what are likely to be the youngest TRIM genes in the human genome. For instance, we have identified 11 TRIM genes that are specific to humans and African apes (chimpanzees, bonobos, and gorillas) and another 7 that are human-specific. Many of these young genes have never been described, and their identification brings the total number of known human TRIM genes to approximately 100. These genes were acquired through segmental duplications, most of which originated from a single locus on chromosome 11. Another polymorphic duplication of this locus has resulted in these genes being copy number variable within the human population, with a Han Chinese woman identified as having 12 additional copies of these TRIM genes compared to other individuals screened in this study. Recently, this locus was annotated as one of 34 “hotspot” regions that are also copy number variable in the genomes of chimpanzees and rhesus macaques. Most of the young TRIM genes originating from this locus are expressed, spliced, and contain signatures of positive natural selection in regions known to determine virus recognition in TRIM5α. However, we find that they do not restrict the same retroviruses as TRIM5α, consistent with the high degree of divergence observed in the regions that control target specificity. We propose that this recombinationally volatile locus serves as a reservoir from which new TRIM genes arise through segmental duplication, allowing primates to continually acquire new antiviral genes that can be selected to target new and evolving pathogens.
Integrating Teaching and Research in Undergraduate Biology Laboratory Education
Matthew J. Kloser equal contributor,Sara E. Brownell equal contributor,Nona R. Chiariello,Tadashi Fukami
PLOS Biology , 2011, DOI: 10.1371/journal.pbio.1001174
Mucosal Immunization with Iron Receptor Antigens Protects against Urinary Tract Infection
Christopher J. Alteri equal contributor,Erin C. Hagan equal contributor,Kelsey E. Sivick equal contributor,Sara N. Smith,Harry L. T. Mobley
PLOS Pathogens , 2009, DOI: 10.1371/journal.ppat.1000586
Abstract: Uncomplicated infections of the urinary tract, caused by uropathogenic Escherichia coli, are among the most common diseases requiring medical intervention. A preventive vaccine to reduce the morbidity and fiscal burden these infections have upon the healthcare system would be beneficial. Here, we describe the results of a large-scale selection process that incorporates bioinformatic, genomic, transcriptomic, and proteomic screens to identify six vaccine candidates from the 5379 predicted proteins encoded by uropathogenic E. coli strain CFT073. The vaccine candidates, ChuA, Hma, Iha, IreA, IroN, and IutA, all belong to a functional class of molecules that is involved in iron acquisition, a process critical for pathogenesis in all microbes. Intranasal immunization of CBA/J mice with these outer membrane iron receptors elicited a systemic and mucosal immune response that included the production of antigen-specific IgM, IgG, and IgA antibodies. The cellular response to vaccination was characterized by the induction and secretion of IFN-γ and IL-17. Of the six potential vaccine candidates, IreA, Hma, and IutA provided significant protection from experimental infection. In immunized animals, class-switching from IgM to IgG and production of antigen-specific IgA in the urine represent immunological correlates of protection from E. coli bladder colonization. These findings are an important first step toward the development of a subunit vaccine to prevent urinary tract infections and demonstrate how targeting an entire class of molecules that are collectively required for pathogenesis may represent a fundamental strategy to combat infections.
CHD3 Proteins and Polycomb Group Proteins Antagonistically Determine Cell Identity in Arabidopsis
Ernst Aichinger equal contributor,Corina B. R. Villar equal contributor,Sara Farrona,José C. Reyes,Lars Hennig,Claudia K?hler
PLOS Genetics , 2009, DOI: 10.1371/journal.pgen.1000605
Abstract: Dynamic regulation of chromatin structure is of fundamental importance for modulating genomic activities in higher eukaryotes. The opposing activities of Polycomb group (PcG) and trithorax group (trxG) proteins are part of a chromatin-based cellular memory system ensuring the correct expression of specific transcriptional programs at defined developmental stages. The default silencing activity of PcG proteins is counteracted by trxG proteins that activate PcG target genes and prevent PcG mediated silencing activities. Therefore, the timely expression and regulation of PcG proteins and counteracting trxG proteins is likely to be of fundamental importance for establishing cell identity. Here, we report that the chromodomain/helicase/DNA–binding domain CHD3 proteins PICKLE (PKL) and PICKLE RELATED2 (PKR2) have trxG-like functions in plants and are required for the expression of many genes that are repressed by PcG proteins. The pkl mutant could partly suppress the leaf and flower phenotype of the PcG mutant curly leaf, supporting the idea that CHD3 proteins and PcG proteins antagonistically determine cell identity in plants. The direct targets of PKL in roots include the PcG genes SWINGER and EMBRYONIC FLOWER2 that encode subunits of Polycomb repressive complexes responsible for trimethylating histone H3 at lysine 27 (H3K27me3). Similar to mutants lacking PcG proteins, lack of PKL and PKR2 caused reduced H3K27me3 levels and, therefore, increased expression of a set of PcG protein target genes in roots. Thus, PKL and PKR2 are directly required for activation of PcG protein target genes and in roots are also indirectly required for repression of PcG protein target genes. Reduced PcG protein activity can lead to cell de-differentiation and callus-like tissue formation in pkl pkr2 mutants. Thus, in contrast to mammals, where PcG proteins are required to maintain pluripotency and to prevent cell differentiation, in plants PcG proteins are required to promote cell differentiation by suppressing embryonic development.
The Gag Cleavage Product, p12, is a Functional Constituent of the Murine Leukemia Virus Pre-Integration Complex
Adi Prizan-Ravid equal contributor,Efrat Elis equal contributor,Nihay Laham-Karam,Sara Selig,Marcelo Ehrlich,Eran Bacharach
PLOS Pathogens , 2010, DOI: 10.1371/journal.ppat.1001183
Abstract: The p12 protein is a cleavage product of the Gag precursor of the murine leukemia virus (MLV). Specific mutations in p12 have been described that affect early stages of infection, rendering the virus replication-defective. Such mutants showed normal generation of genomic DNA but no formation of circular forms, which are markers of nuclear entry by the viral DNA. This suggested that p12 may function in early stages of infection but the precise mechanism of p12 action is not known. To address the function and follow the intracellular localization of the wt p12 protein, we generated tagged p12 proteins in the context of a replication-competent virus, which allowed for the detection of p12 at early stages of infection by immunofluorescence. p12 was found to be distributed to discrete puncta, indicative of macromolecular complexes. These complexes were localized to the cytoplasm early after infection, and thereafter accumulated adjacent to mitotic chromosomes. This chromosomal accumulation was impaired for p12 proteins with a mutation that rendered the virus integration-defective. Immunofluorescence demonstrated that intracellular p12 complexes co-localized with capsid, a known constituent of the MLV pre-integration complex (PIC), and immunofluorescence combined with fluorescent in situ hybridization (FISH) revealed co-localization of the p12 proteins with the incoming reverse transcribed viral DNA. Interactions of p12 with the capsid and with the viral DNA were also demonstrated by co-immunoprecipitation. These results imply that p12 proteins are components of the MLV PIC. Furthermore, a large excess of wt PICs did not rescue the defect in integration of PICs derived from mutant p12 particles, demonstrating that p12 exerts its function as part of this complex. Altogether, these results imply that p12 proteins are constituent of the MLV PIC and function in directing the PIC from the cytoplasm towards integration.
Long Noncoding RNAs Promote Transcriptional Poising of Inducible Genes
Sara C. Cloutier equal contributor,Siwen Wang equal contributor,Wai Kit Ma,Christopher J. Petell,Elizabeth J. Tran
PLOS Biology , 2013, DOI: 10.1371/journal.pbio.1001715
Abstract: Long noncoding RNAs (lncRNAs) are a class of molecules that impinge on the expression of protein-coding genes. Previous studies have suggested that the GAL cluster-associated lncRNAs of Saccharomyces cerevisiae repress expression of the protein-coding GAL genes. Herein, we demonstrate a previously unrecognized role for the GAL lncRNAs in activating gene expression. In yeast strains lacking the RNA helicase, DBP2, or the RNA decay enzyme, XRN1, we find that the GAL lncRNAs specifically accelerate gene expression from a prior repressive state. Furthermore, we provide evidence that the previously suggested repressive role is a result of specific mutant phenotypes, rather than a reflection of the normal, wild-type function of these noncoding RNAs. To shed light on the mechanism for lncRNA-dependent gene activation, we show that rapid induction of the protein-coding GAL genes is associated with faster recruitment of RNA polymerase II and reduced association of transcriptional repressors with GAL gene promoters. This suggests that the GAL lncRNAs enhance expression by derepressing the GAL genes. Consistently, the GAL lncRNAs enhance the kinetics of transcriptional induction, promoting faster expression of the protein-coding GAL genes upon the switch in carbon source. We suggest that the GAL lncRNAs poise inducible genes for rapid activation, enabling cells to more effectively trigger new transcriptional programs in response to cellular cues.
Host Adaptation Is Contingent upon the Infection Route Taken by Pathogens
Nelson E. Martins equal contributor,Vitor G. Faria equal contributor,Luis Teixeira,Sara Magalh?es ,élio Sucena
PLOS Pathogens , 2013, DOI: 10.1371/journal.ppat.1003601
Abstract: Evolution of pathogen virulence is affected by the route of infection. Also, alternate infection routes trigger different physiological responses on hosts, impinging on host adaptation and on its interaction with pathogens. Yet, how route of infection may shape adaptation to pathogens has not received much attention at the experimental level. We addressed this question through the experimental evolution of an outbred Drosophila melanogaster population infected by two different routes (oral and systemic) with Pseudomonas entomophila. The two selection regimes led to markedly different evolutionary trajectories. Adaptation to infection through one route did not protect from infection through the alternate route, indicating distinct genetic bases. Finally, relatively to the control population, evolved flies were not more resistant to bacteria other than Pseudomonas and showed higher susceptibility to viral infections. These specificities and trade-offs may contribute to the maintenance of genetic variation for resistance in natural populations. Our data shows that the infection route affects host adaptation and thus, must be considered in studies of host-pathogen interaction.
Dual RNA-seq of Parasite and Host Reveals Gene Expression Dynamics during Filarial Worm–Mosquito Interactions
Young-Jun Choi equal contributor,Matthew T. Aliota equal contributor,George F. Mayhew,Sara M. Erickson,Bruce M. Christensen
PLOS Neglected Tropical Diseases , 2014, DOI: 10.1371/journal.pntd.0002905
Abstract: Background Parasite biology, by its very nature, cannot be understood without integrating it with that of the host, nor can the host response be adequately explained without considering the activity of the parasite. However, due to experimental limitations, molecular studies of parasite-host systems have been predominantly one-sided investigations focusing on either of the partners involved. Here, we conducted a dual RNA-seq time course analysis of filarial worm parasite and host mosquito to better understand the parasite processes underlying development in and interaction with the host tissue, from the establishment of infection to the development of infective-stage larva. Methodology/Principal Findings Using the Brugia malayi–Aedes aegypti system, we report parasite gene transcription dynamics, which exhibited a highly ordered developmental program consisting of a series of cyclical and state-transitioning temporal patterns. In addition, we contextualized these parasite data in relation to the concurrent dynamics of the host transcriptome. Comparative analyses using uninfected tissues and different host strains revealed the influence of parasite development on host gene transcription as well as the influence of the host environment on parasite gene transcription. We also critically evaluated the life-cycle transcriptome of B. malayi by comparing developmental stages in the mosquito relative to those in the mammalian host, providing insight into gene expression changes underpinning the mosquito-borne parasitic lifestyle of this heteroxenous parasite. Conclusions/Significance The data presented herein provide the research community with information to design wet lab experiments and select candidates for future study to more fully dissect the whole set of molecular interactions of both organisms in this mosquito-filarial worm symbiotic relationship. Furthermore, characterization of the transcriptional program over the complete life cycle of the parasite, including stages within the mosquito, could help devise novel targets for control strategies.
Mouse Genetics Suggests Cell-Context Dependency for Myc-Regulated Metabolic Enzymes during Tumorigenesis
Lisa M. Nilsson,Tacha Zi Plym Forshell equal contributor,Sara Rimpi equal contributor,Christiane Kreutzer,Walter Pretsch,Georg W. Bornkamm,Jonas A. Nilsson
PLOS Genetics , 2012, DOI: 10.1371/journal.pgen.1002573
Abstract: c-Myc (hereafter called Myc) belongs to a family of transcription factors that regulates cell growth, cell proliferation, and differentiation. Myc initiates the transcription of a large cast of genes involved in cell growth by stimulating metabolism and protein synthesis. Some of these, like those involved in glycolysis, may be part of the Warburg effect, which is defined as increased glucose uptake and lactate production in the presence of adequate oxygen supply. In this study, we have taken a mouse-genetics approach to challenge the role of select Myc-regulated metabolic enzymes in tumorigenesis in vivo. By breeding λ-Myc transgenic mice, ApcMin mice, and p53 knockout mice with mouse models carrying inactivating alleles of Lactate dehydrogenase A (Ldha), 3-Phosphoglycerate dehydrogenase (Phgdh) and Serine hydroxymethyltransferase 1 (Shmt1), we obtained offspring that were monitored for tumor development. Very surprisingly, we found that these genes are dispensable for tumorigenesis in these genetic settings. However, experiments in fibroblasts and colon carcinoma cells expressing oncogenic Ras show that these cells are sensitive to Ldha knockdown. Our genetic models reveal cell context dependency and a remarkable ability of tumor cells to adapt to alterations in critical metabolic pathways. Thus, to achieve clinical success, it will be of importance to correctly stratify patients and to find synthetic lethal combinations of inhibitors targeting metabolic enzymes.
Page 1 /9127
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.