oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2018 ( 7 )

2017 ( 7 )

2016 ( 8 )

2015 ( 68 )

Custom range...

Search Results: 1 - 10 of 972 matches for " Rama Chellappa "
All listed articles are free for downloading (OA Articles)
Page 1 /972
Display every page Item
A Unified Approach for Modeling and Recognition of Individual Actions and Group Activities
Qiang Qiu,Rama Chellappa
Computer Science , 2012,
Abstract: Recognizing group activities is challenging due to the difficulties in isolating individual entities, finding the respective roles played by the individuals and representing the complex interactions among the participants. Individual actions and group activities in videos can be represented in a common framework as they share the following common feature: both are composed of a set of low-level features describing motions, e.g., optical flow for each pixel or a trajectory for each feature point, according to a set of composition constraints in both temporal and spatial dimensions. In this paper, we present a unified model to assess the similarity between two given individual or group activities. Our approach avoids explicit extraction of individual actors, identifying and representing the inter-person interactions. With the proposed approach, retrieval from a video database can be performed through Query-by-Example; and activities can be recognized by querying videos containing known activities. The suggested video matching process can be performed in an unsupervised manner. We demonstrate the performance of our approach by recognizing a set of human actions and football plays.
Growing Regression Forests by Classification: Applications to Object Pose Estimation
Kota Hara,Rama Chellappa
Computer Science , 2013,
Abstract: In this work, we propose a novel node splitting method for regression trees and incorporate it into the regression forest framework. Unlike traditional binary splitting, where the splitting rule is selected from a predefined set of binary splitting rules via trial-and-error, the proposed node splitting method first finds clusters of the training data which at least locally minimize the empirical loss without considering the input space. Then splitting rules which preserve the found clusters as much as possible are determined by casting the problem into a classification problem. Consequently, our new node splitting method enjoys more freedom in choosing the splitting rules, resulting in more efficient tree structures. In addition to the Euclidean target space, we present a variant which can naturally deal with a circular target space by the proper use of circular statistics. We apply the regression forest employing our node splitting to head pose estimation (Euclidean target space) and car direction estimation (circular target space) and demonstrate that the proposed method significantly outperforms state-of-the-art methods (38.5% and 22.5% error reduction respectively).
Compositional Dictionaries for Domain Adaptive Face Recognition
Qiang Qiu,Rama Chellappa
Computer Science , 2013,
Abstract: We present a dictionary learning approach to compensate for the transformation of faces due to changes in view point, illumination, resolution, etc. The key idea of our approach is to force domain-invariant sparse coding, i.e., design a consistent sparse representation of the same face in different domains. In this way, classifiers trained on the sparse codes in the source domain consisting of frontal faces for example can be applied to the target domain (consisting of faces in different poses, illumination conditions, etc) without much loss in recognition accuracy. The approach is to first learn a domain base dictionary, and then describe each domain shift (identity, pose, illumination) using a sparse representation over the base dictionary. The dictionary adapted to each domain is expressed as sparse linear combinations of the base dictionary. In the context of face recognition, with the proposed compositional dictionary approach, a face image can be decomposed into sparse representations for a given subject, pose and illumination respectively. This approach has three advantages: first, the extracted sparse representation for a subject is consistent across domains and enables pose and illumination insensitive face recognition. Second, sparse representations for pose and illumination can subsequently be used to estimate the pose and illumination condition of a face image. Finally, by composing sparse representations for subject and the different domains, we can also perform pose alignment and illumination normalization. Extensive experiments using two public face datasets are presented to demonstrate the effectiveness of our approach for face recognition.
Mixed-State Models for Nonstationary Multiobject Activities
Cuntoor Naresh P,Chellappa Rama
EURASIP Journal on Advances in Signal Processing , 2007,
Abstract: We present a mixed-state space approach for modeling and segmenting human activities. The discrete-valued component of the mixed state represents higher-level behavior while the continuous state models the dynamics within behavioral segments. A basis of behaviors based on generic properties of motion trajectories is chosen to characterize segments of activities. A Viterbi-based algorithm to detect boundaries between segments is described. The usefulness of the proposed approach for temporal segmentation and anomaly detection is illustrated using the TSA airport tarmac surveillance dataset, the bank monitoring dataset, and the UCF database of human actions.
Mixed-State Models for Nonstationary Multiobject Activities
Naresh P. Cuntoor,Rama Chellappa
EURASIP Journal on Advances in Signal Processing , 2007, DOI: 10.1155/2007/65989
Abstract: We present a mixed-state space approach for modeling and segmenting human activities. The discrete-valued component of the mixed state represents higher-level behavior while the continuous state models the dynamics within behavioral segments. A basis of behaviors based on generic properties of motion trajectories is chosen to characterize segments of activities. A Viterbi-based algorithm to detect boundaries between segments is described. The usefulness of the proposed approach for temporal segmentation and anomaly detection is illustrated using the TSA airport tarmac surveillance dataset, the bank monitoring dataset, and the UCF database of human actions.
Pose-Encoded Spherical Harmonics for Face Recognition and Synthesis Using a Single Image
Zhanfeng Yue,Wenyi Zhao,Rama Chellappa
EURASIP Journal on Advances in Signal Processing , 2007, DOI: 10.1155/2008/748483
Abstract: Face recognition under varying pose is a challenging problem, especially when illumination variations are also present. In this paper, we propose to address one of the most challenging scenarios in face recognition. That is, to identify a subject from a test image that is acquired under different pose and illumination condition from only one training sample (also known as a gallery image) of this subject in the database. For example, the test image could be semifrontal and illuminated by multiple lighting sources while the corresponding training image is frontal under a single lighting source. Under the assumption of Lambertian reflectance, the spherical harmonics representation has proved to be effective in modeling illumination variations for a fixed pose. In this paper, we extend the spherical harmonics representation to encode pose information. More specifically, we utilize the fact that 2D harmonic basis images at different poses are related by close-form linear transformations, and give a more convenient transformation matrix to be directly used for basis images. An immediate application is that we can easily synthesize a different view of a subject under arbitrary lighting conditions by changing the coefficients of the spherical harmonics representation. A more important result is an efficient face recognition method, based on the orthonormality of the linear transformations, for solving the above-mentioned challenging scenario. Thus, we directly project a nonfrontal view test image onto the space of frontal view harmonic basis images. The impact of some empirical factors due to the projection is embedded in a sparse warping matrix; for most cases, we show that the recognition performance does not deteriorate after warping the test image to the frontal view. Very good recognition results are obtained using this method for both synthetic and challenging real images.
Information-theoretic Dictionary Learning for Image Classification
Qiang Qiu,Vishal M. Patel,Rama Chellappa
Mathematics , 2012,
Abstract: We present a two-stage approach for learning dictionaries for object classification tasks based on the principle of information maximization. The proposed method seeks a dictionary that is compact, discriminative, and generative. In the first stage, dictionary atoms are selected from an initial dictionary by maximizing the mutual information measure on dictionary compactness, discrimination and reconstruction. In the second stage, the selected dictionary atoms are updated for improved reconstructive and discriminative power using a simple gradient ascent algorithm on mutual information. Experiments using real datasets demonstrate the effectiveness of our approach for image classification tasks.
Sparse Dictionary-based Attributes for Action Recognition and Summarization
Qiang Qiu,Zhuolin Jiang,Rama Chellappa
Computer Science , 2013,
Abstract: We present an approach for dictionary learning of action attributes via information maximization. We unify the class distribution and appearance information into an objective function for learning a sparse dictionary of action attributes. The objective function maximizes the mutual information between what has been learned and what remains to be learned in terms of appearance information and class distribution for each dictionary atom. We propose a Gaussian Process (GP) model for sparse representation to optimize the dictionary objective function. The sparse coding property allows a kernel with compact support in GP to realize a very efficient dictionary learning process. Hence we can describe an action video by a set of compact and discriminative action attributes. More importantly, we can recognize modeled action categories in a sparse feature space, which can be generalized to unseen and unmodeled action categories. Experimental results demonstrate the effectiveness of our approach in action recognition and summarization.
MKL-RT: Multiple Kernel Learning for Ratio-trace Problems via Convex Optimization
Raviteja Vemulapalli,Vinay Praneeth Boda,Rama Chellappa
Computer Science , 2014,
Abstract: In the recent past, automatic selection or combination of kernels (or features) based on multiple kernel learning (MKL) approaches has been receiving significant attention from various research communities. Though MKL has been extensively studied in the context of support vector machines (SVM), it is relatively less explored for ratio-trace problems. In this paper, we show that MKL can be formulated as a convex optimization problem for a general class of ratio-trace problems that encompasses many popular algorithms used in various computer vision applications. We also provide an optimization procedure that is guaranteed to converge to the global optimum of the proposed optimization problem. We experimentally demonstrate that the proposed MKL approach, which we refer to as MKL-RT, can be successfully used to select features for discriminative dimensionality reduction and cross-modal retrieval. We also show that the proposed convex MKL-RT approach performs better than the recently proposed non-convex MKL-DR approach.
A Deep Pyramid Deformable Part Model for Face Detection
Rajeev Ranjan,Vishal M. Patel,Rama Chellappa
Computer Science , 2015,
Abstract: We present a face detection algorithm based on Deformable Part Models and deep pyramidal features. The proposed method called DP2MFD is able to detect faces of various sizes and poses in unconstrained conditions. It reduces the gap in training and testing of DPM on deep features by adding a normalization layer to the deep convolutional neural network (CNN). Extensive experiments on four publicly available unconstrained face detection datasets show that our method is able to capture the meaningful structure of faces and performs significantly better than many competitive face detection algorithms.
Page 1 /972
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.