oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2020 ( 5 )

2019 ( 394 )

2018 ( 488 )

2017 ( 517 )

Custom range...

Search Results: 1 - 10 of 373898 matches for " R. G. Moore "
All listed articles are free for downloading (OA Articles)
Page 1 /373898
Display every page Item
Classical Scattering in $1+1$ Dimensional String Theory
G. Moore,R. Plesser
Physics , 1992, DOI: 10.1103/PhysRevD.46.1730
Abstract: We find the general solution to Polchinski's classical scattering equations for $1+1$ dimensional string theory. This allows efficient computation of scattering amplitudes in the standard Liouville $\times$ $c=1$ background. Moreover, the solution leads to a mapping from a large class of time-dependent collective field theory backgrounds to corresponding nonlinear sigma models. Finally, we derive recursion relations between tachyon amplitudes. These may be summarized by an infinite set of nonlinear PDE's for the partition function in an arbitrary time-dependent background.
Balanced Topological Field Theories
R. Dijkgraaf,G. Moore
Mathematics , 1996, DOI: 10.1007/s002200050097
Abstract: We describe a class of topological field theories called ``balanced topological field theories.'' These theories are associated to moduli problems with vanishing virtual dimension and calculate the Euler character of various moduli spaces. We show that these theories are closely related to the geometry and equivariant cohomology of ``iterated superspaces'' that carry two differentials. We find the most general action for these theories, which turns out to define Morse theory on field space. We illustrate the constructions with numerous examples. Finally, we relate these theories to topological sigma-models twisted using an isometry of the target space.
The partition function of 2d string theory
R. Dijkgraaf,G. Moore,R. Plesser
Physics , 1992, DOI: 10.1016/0550-3213(93)90019-L
Abstract: We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in 2D string theory. This expression makes manifest relations of the $c=1$ system to KP flow and $W_{1+\infty}$ constraints. Moreover we derive a Kontsevich-Penner integral representation of this generating functional.
Non-abelian Tensor-multiplet Anomalies
J. A. Harvey,R. Minasian,G. Moore
Physics , 1998, DOI: 10.1088/1126-6708/1998/09/004
Abstract: We use the anomaly cancellation of the M-theory fivebrane to derive the R-symmetry anomalies of the $A_{N}$ $(0,2)$ tensor-multiplet theories. This result leads to a simple derivation of black hole entropy in $d=4, \CN=2$ compactifications of $M$-theory. We also show how the formalism of normal bundle anomaly cancellation clarifies the Kaluza-Klein origin of Chern-Simons terms in gauged supergravity theories. The results imply the existence of interesting 1/N corrections in the AdS/CFT correspondence.
Controlling two-species Mott-insulator phses in an optical lattice to form an array of dipolar molecules
M. G. Moore,H. R. Sadeghpour
Physics , 2002, DOI: 10.1103/PhysRevA.67.041603
Abstract: We consider the transfer of a two-species Bose-Einstein condensate into an optical lattice with a density such that that a Mott-insulator state with one atom per species per lattice site is obtained in the deep lattice regime. Depending on collision parameters the result could be either a `mixed' or a `separated' Mott-insulator phase. Such a `mixed' two-species insulator could then be photo-associated into an array of dipolar molecules suitable for quantum computation or the formation of a dipolar molecular condensate. For the case of a $^{87}$Rb-$^{41}$K two-species BEC, however, the large inter-species scattering length makes obtaining the desired `mixed' Mott insulator phase difficult. To overcome this difficulty we investigate the effect of varying the lattice frequency on the mean-field interaction and find a favorable parameter regime under which a lattice of dipolar molecules could be generated.
Quantifying the contribution of glacier runoff to streamflow in the upper Columbia River Basin, Canada
G. Jost, R. D. Moore, B. Menounos,R. Wheate
Hydrology and Earth System Sciences (HESS) & Discussions (HESSD) , 2012,
Abstract: Glacier melt provides important contributions to streamflow in many mountainous regions. Hydrologic model calibration in glacier-fed catchments is difficult because errors in modelling snow accumulation can be offset by compensating errors in glacier melt. This problem is particularly severe in catchments with modest glacier cover, where goodness-of-fit statistics such as the Nash-Sutcliffe model efficiency may not be highly sensitive to the streamflow variance associated with glacier melt. While glacier mass balance measurements can be used to aid model calibration, they are absent for most catchments. We introduce the use of glacier volume change determined from repeated glacier mapping in a guided GLUE (generalized likelihood uncertainty estimation) procedure to calibrate a hydrologic model. This approach is applied to the Mica basin in the Canadian portion of the Columbia River Basin using the HBV-EC hydrologic model. Use of glacier volume change in the calibration procedure effectively reduced parameter uncertainty and helped to ensure that the model was accurately predicting glacier mass balance as well as streamflow. The seasonal and interannual variations in glacier melt contributions were assessed by running the calibrated model with historic glacier cover and also after converting all glacierized areas to alpine land cover in the model setup. Sensitivity of modelled streamflow to historic changes in glacier cover and to projected glacier changes for a climate warming scenario was assessed by comparing simulations using static glacier cover to simulations that accommodated dynamic changes in glacier area. Although glaciers in the Mica basin only cover 5% of the watershed, glacier ice melt contributes up to 25% and 35% of streamflow in August and September, respectively. The mean annual contribution of ice melt to total streamflow varied between 3 and 9% and averaged 6%. Glacier ice melt is particularly important during warm, dry summers following winters with low snow accumulation and early snowpack depletion. Although the sensitivity of streamflow to historic glacier area changes is small and within parameter uncertainties, our results suggest that glacier area changes have to be accounted for in future projections of late summer streamflow. Our approach provides an effective and widely applicable method to calibrate hydrologic models in glacier fed catchments, as well as to quantify the magnitude and timing of glacier melt contributions to streamflow.
Quantifying the contribution of glacier runoff to streamflow in the upper Columbia River basin, Canada
G. Jost,R. D. Moore,B. Menounos,R. Wheate
Hydrology and Earth System Sciences Discussions , 2011, DOI: 10.5194/hessd-8-4979-2011
Abstract: Glacier melt provides important contributions to streamflow in many mountainous regions. Hydrologic model calibration in glacier-fed catchments is difficult because errors in modelling snow accumulation can be offset by compensating errors in glacier melt. This problem is particularly severe in catchments with modest glacier cover, where goodness-of-fit statistics such as the Nash-Sutcliffe model efficiency may not be highly sensitive to the streamflow variance associated with glacier melt. While glacier mass balance measurements can be used to aid model calibration, they are absent for most catchments. We introduce the use of glacier volume change determined from repeated glacier mapping in a guided GLUE (generalized likelihood uncertainty estimation) procedure to calibrate a hydrologic model. We also explicitly account for changes in glacier area through the calibration and test periods. The approach is applied to the Mica basin in the Canadian portion of the Columbia River basin using the HBV-EC hydrologic model. Use of glacier volume change in the calibration procedure effectively reduced parameter uncertainty and helped to ensure that the model was accurately predicting glacier mass balance as well as streamflow. The seasonal and interannual variations in glacier melt contributions were assessed by running the calibrated model with historic glacier cover and also after converting all glacierized areas to alpine land cover in the model setup. Although glaciers in the Mica basin only cover 5 % of the watershed, glacier ice melt contributes up to 25 % and 35 % of streamflow in August and September, respectively, and is particularly important during periods of warm, dry weather following winters with low accumulation and early snowpack depletion. The approach introduced in this study provides an effective and widely applicable approach for calibrating hydrologic models in glacier fed catchments, as well as for quantifying the magnitude and timing of glacier melt contributions to streamflow.
Controls on groundwater response and runoff source area dynamics in a snowmelt-dominated montane catchment
R. S. Smith,R. D. Moore,M. Weiler,G. Jost
Hydrology and Earth System Sciences Discussions , 2013, DOI: 10.5194/hessd-10-2549-2013
Abstract: The role of spatial variability in water inputs on runoff source area dynamics has generally not received as much research attention as topography and soils; however, the influence of topography and forest cover on snow surface energy exchanges can result in asynchronous snowmelt throughout a catchment complicating the space-time patterns of runoff generation. This study investigates temporal variation in the relative importance of spatial controls on the occurrence, timing, and persistence of shallow groundwater response utilizing a highly distributed monitoring network in a snowmelt-dominated montane catchment in western Canada. The study findings indicate that deep soil hydraulic conductivity is a first-order control on the distribution of sites that generate shallow groundwater response versus sites that experience only deep percolation. Upslope contributing area and slope gradient are first-order controls on the persistence of groundwater response during peak flow, recession flow, and low flow periods. Runoff source areas expand and contract throughout these periods according to an interplay between catchment wetness and the spatial patterns of topographic convergence. However, controls on the differential timing, intensity, and quantity of snowmelt and controls on vertical versus lateral flux partitioning in the soil overwhelm the influence of topographic convergence on runoff source area dynamics during early spring freshet periods. The study findings suggest that various topographic indices and topography-based rainfall runoff models are not necessarily applicable to modelling snowmelt runoff source area dynamics during all streamflow periods for snowmelt-dominated montane catchments.
On the incidence of Kelvin-Helmholtz instability for mass exchange process at the Earth’s magnetopause
R. Smets,D. Delcourt,G. Chanteur,T. E. Moore
Annales Geophysicae (ANGEO) , 2003,
Abstract: Due to the velocity shear imposed by the solar wind flowing around the magnetosphere, the magnetopause flanks are preferred regions for the development of a Kelvin-Helmholtz instability. Since its efficiency for momentum transfer across the magnetopause has already been established, we investigate its efficiency for mass transfer. Using nonresistive magnetohydrodynamic simulations to describe the magnetic field shape in the instability region, we use test-particle calculations to analyse particle dynamics. We show that the magnetopause thickness and the instability wave-length are too large to lead to nonadiabatic motion of thermal electrons from the magnetosphere. On the other hand, the large mass of H+, He+ and O+ ions leads to such nonadiabatic motion and we thus propose the Kelvin-Helmholtz instability as a mechanism for either magnetospheric ion leakage into the magnetosheath or solar wind ion entry in the magnetosphere. Test-particle calculations are performed in a dimensionless way to discuss the case of each type of ion. The crossing rate is of the order of 10%. This rate is anti-correlated with shear velocity and instability wavelength. It increases with the magnetic shear. The crossing regions at the magnetopause are narrow and localized in the vicinity of the instability wave front. As a Kelvin-Helmholtz instability allows for mass transfer through the magnetopause without any resistivity, we propose it as an alternate process to reconnection for mass transfer through magnetic boundaries. Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; MHD waves and instabilities) – Space plasma physics (numerical simulation studies)
Daytime pattern of post-exercise protein intake affects whole-body protein turnover in resistance-trained males
Moore Daniel R,Areta Jose,Coffey Vernon G,Stellingwerff Trent
Nutrition & Metabolism , 2012, DOI: 10.1186/1743-7075-9-91
Abstract: Background The pattern of protein intake following exercise may impact whole-body protein turnover and net protein retention. We determined the effects of different protein feeding strategies on protein metabolism in resistance-trained young men. Methods Participants were randomly assigned to ingest either 80g of whey protein as 8x10g every 1.5h (PULSE; n=8), 4x20g every 3h (intermediate, INT; n=7), or 2x40g every 6h (BOLUS; n=8) after an acute bout of bilateral knee extension exercise (4x10 repetitions at 80% maximal strength). Whole-body protein turnover (Q), synthesis (S), breakdown (B), and net balance (NB) were measured throughout 12h of recovery by a bolus ingestion of [15N]glycine with urinary [15N]ammonia enrichment as the collected end-product. Results PULSE Q rates were greater than BOLUS (~19%, P<0.05) with a trend towards being greater than INT (~9%, P=0.08). Rates of S were 32% and 19% greater and rates of B were 51% and 57% greater for PULSE as compared to INT and BOLUS, respectively (P<0.05), with no difference between INT and BOLUS. There were no statistical differences in NB between groups (P=0.23); however, magnitude-based inferential statistics revealed likely small (mean effect±90%CI; 0.59±0.87) and moderate (0.80±0.91) increases in NB for PULSE and INT compared to BOLUS and possible small increase (0.42±1.00) for INT vs. PULSE. Conclusion We conclude that the pattern of ingested protein, and not only the total daily amount, can impact whole-body protein metabolism. Individuals aiming to maximize NB would likely benefit from repeated ingestion of moderate amounts of protein (~20g) at regular intervals (~3h) throughout the day.
Page 1 /373898
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.