oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2020 ( 13 )

2019 ( 174 )

2018 ( 233 )

2017 ( 247 )

Custom range...

Search Results: 1 - 10 of 145396 matches for " Quoc V. Le "
All listed articles are free for downloading (OA Articles)
Page 1 /145396
Display every page Item
Distributed Representations of Sentences and Documents
Quoc V. Le,Tomas Mikolov
Computer Science , 2014,
Abstract: Many machine learning algorithms require the input to be represented as a fixed-length feature vector. When it comes to texts, one of the most common fixed-length features is bag-of-words. Despite their popularity, bag-of-words features have two major weaknesses: they lose the ordering of the words and they also ignore semantics of the words. For example, "powerful," "strong" and "Paris" are equally distant. In this paper, we propose Paragraph Vector, an unsupervised algorithm that learns fixed-length feature representations from variable-length pieces of texts, such as sentences, paragraphs, and documents. Our algorithm represents each document by a dense vector which is trained to predict words in the document. Its construction gives our algorithm the potential to overcome the weaknesses of bag-of-words models. Empirical results show that Paragraph Vectors outperform bag-of-words models as well as other techniques for text representations. Finally, we achieve new state-of-the-art results on several text classification and sentiment analysis tasks.
Neural Programmer: Inducing Latent Programs with Gradient Descent
Arvind Neelakantan,Quoc V. Le,Ilya Sutskever
Computer Science , 2015,
Abstract: Deep neural networks have achieved impressive supervised classification performance in many tasks including image recognition, speech recognition, and sequence to sequence learning. However, this success has not been translated to applications like question answering that may involve complex arithmetic and logic reasoning. A major limitation of these models is in their inability to learn even simple arithmetic and logic operations. For example, it has been shown that neural networks fail to learn to add two binary numbers reliably. In this work, we propose Neural Programmer, an end-to-end differentiable neural network augmented with a small set of basic arithmetic and logic operations. Neural Programmer can call these augmented operations over several steps, thereby inducing compositional programs that are more complex than the built-in operations. The model learns from a weak supervision signal which is the result of execution of the correct program, hence it does not require expensive annotation of the correct program itself. The decisions of what operations to call, and what data segments to apply to are inferred by Neural Programmer. Such decisions, during training, are done in a differentiable fashion so that the entire network can be trained jointly by gradient descent. We find that training the model is difficult, but it can be greatly improved by adding random noise to the gradient. On a fairly complex synthetic table-comprehension dataset, traditional recurrent networks and attentional models perform poorly while Neural Programmer typically obtains nearly perfect accuracy.
Semi-supervised Sequence Learning
Andrew M. Dai,Quoc V. Le
Computer Science , 2015,
Abstract: We present two approaches that use unlabeled data to improve sequence learning with recurrent networks. The first approach is to predict what comes next in a sequence, which is a conventional language model in natural language processing. The second approach is to use a sequence autoencoder, which reads the input sequence into a vector and predicts the input sequence again. These two algorithms can be used as a "pretraining" step for a later supervised sequence learning algorithm. In other words, the parameters obtained from the unsupervised step can be used as a starting point for other supervised training models. In our experiments, we find that long short term memory recurrent networks after being pretrained with the two approaches are more stable and generalize better. With pretraining, we are able to train long short term memory recurrent networks up to a few hundred timesteps, thereby achieving strong performance in many text classification tasks, such as IMDB, DBpedia and 20 Newsgroups.
Sequence to Sequence Learning with Neural Networks
Ilya Sutskever,Oriol Vinyals,Quoc V. Le
Computer Science , 2014,
Abstract: Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT'14 dataset, the translations produced by the LSTM achieve a BLEU score of 34.8 on the entire test set, where the LSTM's BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to 36.5, which is close to the previous best result on this task. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences) improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.
Exploiting Similarities among Languages for Machine Translation
Tomas Mikolov,Quoc V. Le,Ilya Sutskever
Computer Science , 2013,
Abstract: Dictionaries and phrase tables are the basis of modern statistical machine translation systems. This paper develops a method that can automate the process of generating and extending dictionaries and phrase tables. Our method can translate missing word and phrase entries by learning language structures based on large monolingual data and mapping between languages from small bilingual data. It uses distributed representation of words and learns a linear mapping between vector spaces of languages. Despite its simplicity, our method is surprisingly effective: we can achieve almost 90% precision@5 for translation of words between English and Spanish. This method makes little assumption about the languages, so it can be used to extend and refine dictionaries and translation tables for any language pairs.
Document Embedding with Paragraph Vectors
Andrew M. Dai,Christopher Olah,Quoc V. Le
Computer Science , 2015,
Abstract: Paragraph Vectors has been recently proposed as an unsupervised method for learning distributed representations for pieces of texts. In their work, the authors showed that the method can learn an embedding of movie review texts which can be leveraged for sentiment analysis. That proof of concept, while encouraging, was rather narrow. Here we consider tasks other than sentiment analysis, provide a more thorough comparison of Paragraph Vectors to other document modelling algorithms such as Latent Dirichlet Allocation, and evaluate performance of the method as we vary the dimensionality of the learned representation. We benchmarked the models on two document similarity data sets, one from Wikipedia, one from arXiv. We observe that the Paragraph Vector method performs significantly better than other methods, and propose a simple improvement to enhance embedding quality. Somewhat surprisingly, we also show that much like word embeddings, vector operations on Paragraph Vectors can perform useful semantic results.
Listen, Attend and Spell
William Chan,Navdeep Jaitly,Quoc V. Le,Oriol Vinyals
Computer Science , 2015,
Abstract: We present Listen, Attend and Spell (LAS), a neural network that learns to transcribe speech utterances to characters. Unlike traditional DNN-HMM models, this model learns all the components of a speech recognizer jointly. Our system has two components: a listener and a speller. The listener is a pyramidal recurrent network encoder that accepts filter bank spectra as inputs. The speller is an attention-based recurrent network decoder that emits characters as outputs. The network produces character sequences without making any independence assumptions between the characters. This is the key improvement of LAS over previous end-to-end CTC models. On a subset of the Google voice search task, LAS achieves a word error rate (WER) of 14.1% without a dictionary or a language model, and 10.3% with language model rescoring over the top 32 beams. By comparison, the state-of-the-art CLDNN-HMM model achieves a WER of 8.0%.
A Simple Way to Initialize Recurrent Networks of Rectified Linear Units
Quoc V. Le,Navdeep Jaitly,Geoffrey E. Hinton
Computer Science , 2015,
Abstract: Learning long term dependencies in recurrent networks is difficult due to vanishing and exploding gradients. To overcome this difficulty, researchers have developed sophisticated optimization techniques and network architectures. In this paper, we propose a simpler solution that use recurrent neural networks composed of rectified linear units. Key to our solution is the use of the identity matrix or its scaled version to initialize the recurrent weight matrix. We find that our solution is comparable to LSTM on our four benchmarks: two toy problems involving long-range temporal structures, a large language modeling problem and a benchmark speech recognition problem.
Addressing the Rare Word Problem in Neural Machine Translation
Minh-Thang Luong,Ilya Sutskever,Quoc V. Le,Oriol Vinyals,Wojciech Zaremba
Computer Science , 2014,
Abstract: Neural Machine Translation (NMT) is a new approach to machine translation that has shown promising results that are comparable to traditional approaches. A significant weakness in conventional NMT systems is their inability to correctly translate very rare words: end-to-end NMTs tend to have relatively small vocabularies with a single unk symbol that represents every possible out-of-vocabulary (OOV) word. In this paper, we propose and implement an effective technique to address this problem. We train an NMT system on data that is augmented by the output of a word alignment algorithm, allowing the NMT system to emit, for each OOV word in the target sentence, the position of its corresponding word in the source sentence. This information is later utilized in a post-processing step that translates every OOV word using a dictionary. Our experiments on the WMT14 English to French translation task show that this method provides a substantial improvement of up to 2.8 BLEU points over an equivalent NMT system that does not use this technique. With 37.5 BLEU points, our NMT system is the first to surpass the best result achieved on a WMT14 contest task.
An Online Sequence-to-Sequence Model Using Partial Conditioning
Navdeep Jaitly,Quoc V. Le,Oriol Vinyals,Ilya Sutskever,Samy Bengio
Computer Science , 2015,
Abstract: Sequence-to-sequence models have achieved impressive results on various tasks. However, they are unsuitable for tasks that require incremental predictions to be made as more data arrives. This is because they generate an output sequence conditioned on an entire input sequence. In this paper, we present a new model that can make incremental predictions as more input arrives, without redoing the entire computation. Unlike sequence-to-sequence models, our method computes the next-step distribution conditioned on the partial input sequence observed and the partial sequence generated. It accomplishes this goal using an encoder recurrent neural network (RNN) that computes features at the same frame rate as the input, and a transducer RNN that operates over blocks of input steps. The transducer RNN extends the sequence produced so far using a local sequence-to-sequence model. During training, our method uses alignment information to generate supervised targets for each block. Approximate alignment is easily available for tasks such as speech recognition, action recognition in videos, etc. During inference (decoding), beam search is used to find the most likely output sequence for an input sequence. This decoding is performed online - at the end of each block, the best candidates from the previous block are extended through the local sequence-to-sequence model. On TIMIT, our online method achieves 19.8% phone error rate (PER). For comparison with published sequence-to-sequence methods, we used a bidirectional encoder and achieved 18.7% PER compared to 17.6% from the best reported sequence-to-sequence model. Importantly, unlike sequence-to-sequence our model is minimally impacted by the length of the input. On artificially created longer utterances, it achieves 20.9% with a unidirectional model, compared to 20% from the best bidirectional sequence-to-sequence models.
Page 1 /145396
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.