Abstract:
We study the deuteron electrodisintegration with inclusion of the neutral currents focusing on the helicity asymmetry of the exclusive cross section in coplanar geometry. We stress that a measurement of this asymmetry in the quasi elastic region is of interest for an experimental determination of the weak form factors of the nucleon, allowing one to obtain the parity violating electron neutron asymmetry. Numerically, we consider the reaction at low momentum transfer and discuss the sensitivity of the helicity asymmetry to the strangeness radius and magnetic moment. The problems coming from the finite angular acceptance of the spectrometers are also considered.

Abstract:
We discuss the importance of precise study of muon capture in deuterium for correct understanding of some fundamental astrophysical processes

Abstract:
We develop an extension of the classical Bell polynomials introducing the Laguerre-type version of this well-known mathematical tool. The Laguerre-type Bell polynomials are useful in order to compute the nth Laguerre-type derivatives of a composite function. Incidentally, we generalize a result considered by L. Carlitz in order to obtain explicit relationships between Bessel functions and generalized hypergeometric functions.

Abstract:
Outgoing nucleon polarization in exclusive deuteron electrodisintegration is studied at the quasi-elastic peak in the standard theory with emphasis on the effect of nucleonic and pionic relativistic corrections. The cases of polarized beam or/and polarized target are considered. Sizeable relativistic effects are pointed out in several polarization components. The sensitivity of nucleon polarization to the neutron charge form factor $G_E^n$ is discussed. In particular, it is shown that the longitudinal component of neutron polarization with vector polarized deuterons is as sensitive to $G_E^n$ as the sideways beam polarization transfer.

Abstract:
Starting from chiral Lagrangians, possessing the SU(2)_L x SU(2)_R local chiral symmetry, we derive weak axial one-boson exchange currents in the leading order in the 1/M expansion (M is the nucleon mass). We apply these currents in calculations of the cross sections for the disintegration of the deuterons by the low energy neutrinos. The nuclear wave functions are derived from a variant of the OBEPQB potential and from the Nijmegen 93 and Nijmegen I nucleon-nucleon interactions. The comparison of our cross sections with those obtained within the pionless effective field theory and other potential model calculations shows that the solar neutrino-deuteron cross sections can be calculated within an accuracy of 3.3 %.

Abstract:
An analytical form of the Raman shift dependence on size of nanocrystals is presented. Based on the hard confinement model, it works in those cases where the average phonon curve shows a quadratic dependence on the phonon quasi-momentum in the range of interest.

Abstract:
Starting from the axial heavy meson exchange currents, constructed earlier in conjunction with the Bethe--Salpeter equation, we first present the axial $\rho$--, $\omega$-- and $a_1$ meson exchange Feynman amplitudes that satisfy the partial conservation of the axial current. Employing these amplitudes, we derive the corresponding weak axial heavy meson exchange currents in the leading order in the 1/M expansion ($M$ is the nucleon mass), suitable for the nuclear physics calculations beyond the threshold energies and with wave functions obtained by solving the Schr\"odinger equation with one--boson exchange potentials. The constructed currents obey the nuclear form of the partial conservation of the axial current. We apply the space component of these currents in calculations of the cross sections for the disintegration of deuterons by low energy (anti)neutrinos. The deuteron and the final state nucleon--nucleon wave functions are derived (i) from a variant of the OBEPQB potential, and (ii) from the Nijmegen 93 and Nijmegen I nucleon-nucleon interaction. The extracted values of the constant $L_{1, A}$, entering the axial exchange currents of the pionless effective field theory, are in a reasonable agreement with its value predicted by the dimensional analysis.

Abstract:
The parabolic trigonometric functions have recently been introduced as an intermediate step between circular and hyperbolic functions. They have been shown to be expressible in terms of irrational functions, linked to the solution of third degree algebraic equations. We show the link of the parabolic trigonometric functions with the Chebyshev radicals and also prove that further generalized forms of trigonometric functions, providing the natural solutions of the quintic algebraic equation, can be defined. We also discuss the link of this family of functions with the modular elliptic functions. 1

Abstract:
A Molecular Dynamics simulation of the microscopic structure of water confined in a silica pore is presented. A single cavity in the silica glass has been modeled as to reproduce the main features of the pores of real Vycor glass. A layer analysis of the site-site radial distribution functions evidence the presence in the pore of two subsets of water molecules with different microscopic structure. Molecules which reside in the inner layer, close to the center of the pore, have the same structure as bulk water but at a temperature of 30 K higher. On the contrary the structure of the water molecules in the outer layer, close to the substrate, is strongly influenced by the water-substrate hydrophilic interaction and sensible distortions of the H-bond network and of the orientational correlations between neighboring molecules show up. Lowering the hydration has little effect on the structure of water in the outer layer. The consequences on experimental determinations of the structural properties of water in confinement are discussed.

Abstract:
We analyze the parity-violating (PV) components of the analyzing power in elastic electron-proton scattering and discuss their sensitivity to the strange quark contributions to the proton weak form factors. We point out that the component of the analyzing power along the momentum transfer is independent of the electric weak form factor and thus compares favorably with the PV beam asymmetry for a determination of the strangeness magnetic moment. We also show that the transverse component could be used for constraining the strangeness radius. Finally, we argue that a measurement of both components could give experimental information on the strangeness axial charge.