oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2020 ( 1 )

2019 ( 17 )

2018 ( 14 )

2017 ( 13 )

Custom range...

Search Results: 1 - 10 of 5341 matches for " Olivier Acher "
All listed articles are free for downloading (OA Articles)
Page 1 /5341
Display every page Item
A generalization of Snoek's law to ferromagnetic films and composites
Olivier Acher,Sébastien Dubourg
Physics , 2007, DOI: 10.1103/PhysRevB.77.104440
Abstract: The present paper establishes characteristics of the relative magnetic permeability spectrum $\mu$(f) of magnetic materials at microwave frequencies. The integral of the imaginary part of $\mu$(f) multiplied with the frequency f gives remarkable properties. A generalisation of Snoek's law consists in this quantity being bounded by the square of the saturation magnetization multiplied with a constant. While previous results have been obtained in the case of non-conductive materials, this work is a generalization to ferromagnetic materials and ferromagnetic-based composites with significant skin effect. The influence of truncating the summation to finite upper frequencies is investigated, and estimates associated to the finite summation are provided. It is established that, in practice, the integral does not depend on the damping model under consideration. Numerical experiments are performed in the exactly solvable case of ferromagnetic thin films with uniform magnetization, and these numerical experiments are found to confirm our theoretical results. Microwave permeability measurements on soft amorphous films are reported. The relation between the integral and the saturation magnetization is verified experimentally, and some practical applications of the theoretical results are introduced. The integral can be used to determine the average magnetization orientation in materials with complex configurations of the magnetization, and furthermore to demonstrate the accuracy of microwave measurement systems. For certain applications, such as electromagnetic compatibility or radar absorbing materials, the relations established herein provide useful indications for the design of efficient materials, and simple figures of merit to compare the properties measured on various materials.
A Software and Hardware IPTV Architecture for Scalable DVB Distribution
Georg Acher,Detlef Fliegl,Thomas Fuhrmann
International Journal of Digital Multimedia Broadcasting , 2009, DOI: 10.1155/2009/617203
Abstract: Many standards and even more proprietary technologies deal with IP-based television (IPTV). But none of them can transparently map popular public broadcast services such as DVB or ATSC to IPTV with acceptable effort. In this paper we explain why we believe that such a mapping using a light weight framework is an important step towards all-IP multimedia. We then present the NetCeiver architecture: it is based on well-known standards such as IPv6, and it allows zero configuration. The use of multicast streaming makes NetCeiver highly scalable. We also describe a low cost FPGA implementation of the proposed NetCeiver architecture, which can concurrently stream services from up to six full transponders.
Metamorphic Domain-Specific Languages: A Journey Into the Shapes of a Language
Mathieu Acher,Benoit Combemale,Philippe Collet
Computer Science , 2014,
Abstract: External or internal domain-specific languages (DSLs) or (fluent) APIs? Whoever you are -- a developer or a user of a DSL -- you usually have to choose your side; you should not! What about metamorphic DSLs that change their shape according to your needs? We report on our 4-years journey of providing the "right" support (in the domain of feature modeling), leading us to develop an external DSL, different shapes of an internal API, and maintain all these languages. A key insight is that there is no one-size-fits-all solution or no clear superiority of a solution compared to another. On the contrary, we found that it does make sense to continue the maintenance of an external and internal DSL. The vision that we foresee for the future of software languages is their ability to be self-adaptable to the most appropriate shape (including the corresponding integrated development environment) according to a particular usage or task. We call metamorphic DSL such a language, able to change from one shape to another shape.
Magnetic dispersion in a soft amorphous layer with a helical anisotropy profile
Gloanec M.,Dubourg S.,Acher O.,Duverger F.
EPJ Web of Conferences , 2013, DOI: 10.1051/epjconf/20134013003
Abstract: A new analysis method of the magnetization dispersion in a thin magnetic film is presented. It is based on the angular measurement of the permeability spectra and on the evaluation of the integral relation. It provides the average orientation of the magnetization in the layer and a dispersion parameter which quantifies the magnetic dispersion. The method is successfully applied on a soft CoNbZr 800nm magnetic layer which possesses a helical anisotropy profile. This helical profile is obtained by rotating continuously the sample during the sputtering deposition on a scale from R = 0 to 16 turns. The study reveals that, for about 1/2 turn, a maximal dispersion is achieved and, for more elevated rotation speed, the magnetization no longer follows the anisotropy profile but lines up along an easiest axis direction. The experimental data are well described by a one-dimensional micromagnetic model which takes both exchange coupling and a helical anisotropy into account. The analytical cases with an exchange constant null and infinite are also considered in order to gain more insight onto the observed magnetic behaviour in the soft magnetic thin film.
Synthesis of Attributed Feature Models From Product Descriptions: Foundations
Guillaume Bécan,Razieh Behjati,Arnaud Gotlieb,Mathieu Acher
Computer Science , 2015,
Abstract: Feature modeling is a widely used formalism to characterize a set of products (also called configurations). As a manual elaboration is a long and arduous task, numerous techniques have been proposed to reverse engineer feature models from various kinds of artefacts. But none of them synthesize feature attributes (or constraints over attributes) despite the practical relevance of attributes for documenting the different values across a range of products. In this report, we develop an algorithm for synthesizing attributed feature models given a set of product descriptions. We present sound, complete, and parametrizable techniques for computing all possible hierarchies, feature groups, placements of feature attributes, domain values, and constraints. We perform a complexity analysis w.r.t. number of features, attributes, configurations, and domain size. We also evaluate the scalability of our synthesis procedure using randomized configuration matrices. This report is a first step that aims to describe the foundations for synthesizing attributed feature models.
And If Bell’s Inequality Were Not Violated  [PDF]
Olivier Serret
Journal of Modern Physics (JMP) , 2014, DOI: 10.4236/jmp.2014.514137
Abstract:

It briefly recalls the theory of Bell’s inequality and some experimental measures. Then measurements are processed on one hand according to a property of the wave function, on the other hand according to the sum definition. The results of such processed measures are apparently not the same, so Bell’s inequality would not be violated. It is a use of the wave function which implies the violation of the inequality, as it can be seen on the last flowcharts.

Thermodynamics and Irreversibility: From Some Paradoxes to the Efficiency of Effective Engines  [PDF]
Olivier Serret
Journal of Modern Physics (JMP) , 2014, DOI: 10.4236/jmp.2014.516159
Abstract: The traditional thermodynamic theory explains the reversible phenomena quite well, except that reversible phenomena are rare or even impossible in practice. Here the purpose is to propose an explanation valid for reversible and also irreversible phenomena, irreversibility being common or realistic. It previously exposed points tricky to grasp, as the sign of the work exchange, the adiabatic expansion in vacuum (free expansion) or the transfer of heat between two bodies at the same temperature (isothermal transfer). After having slightly modified the concepts of heat transfer (each body produces heat according to its own temperature) and work (distinguishing external pressure from internal pressure), the previous points are more easily explained. At last, an engine efficiency in case of irreversible transfer is proposed. This paper is focused on the form of thermodynamics, on “explanations”; it does not question on “results” (except the irreversible free expansion of 1845...) which remain unchanged.
How to Demonstrate the Lorentz Factor: Variable Time v.s. Variable Inertial Mass  [PDF]
Olivier Serret
Journal of Modern Physics (JMP) , 2015, DOI: 10.4236/jmp.2015.63030
Abstract: For a century, hypothesis of a variable time is laid down by the Relativity Theory. This hypothesis can explain many Nature observations, experiments and formulas, for example the Lorentz factor demonstration. Because of such good explanations, the hypothesis of a variable time has been validated. Nevertheless, it remains some paradoxes and some predictions which are difficult to measure, as a reversible time or the time variation itself. The purpose of this article is to study another hypothesis. If it gives interesting results, it would mean that this alternative hypothesis can also be validated. The idea in this paper is to replace the variable time by a variable inertial mass. To the difference with the Theory of Relativity (where the inertial mass and the gravitational mass are equal and variable), the gravitational mass is here supposed to be constant. So, starting from the definition of the kinetic energy, it is introduced the Lorentz factor. And then it is demonstrated the value of the Lorentz factor thanks to a variable inertial mass. This variable inertial mass can also explain experiments, like Bertozzi experiment. If this alternative demonstration was validated, it could help to open doors, other physical effects could be explained like the addition of velocities.
Velocity Addition Demonstrated from the Conservation of Linear Momenta, an Alternative Expression  [PDF]
Olivier Serret
Journal of Modern Physics (JMP) , 2015, DOI: 10.4236/jmp.2015.66077
Abstract: Is it possible to demonstrate the velocity addition without using a variable time (as it is done in theory of relativity)? The topic of this paper is to propose and demonstrate an alternative expres-sion based on the conservation of linear momenta. The method proposed here is to start from a physical object (and not from a mathematical point), i.e. from an object with a mass. And the hy-pothesis is inertial mass to be different from gravitational mass. Then, when impulses are added, we get an expression of the velocity addition itself. When numerical predictions are compared with experimental results, the differences are lower than the measures uncertainty. And these numerical results are much close to those predicts by the theory of relativity, nevertheless with a little difference at high velocities. If this demonstration and this expression were validated, it would allow giving an alternative explanation to some experiments and nature observations as Doppler Effect on light celerity. But first, it would be necessary to get from laboratories more precise experimental results, in order to validate or not this hypothesis of the sum of linear momenta with a Variable Inertial Mass.
A Chart of Conversion Supporting EPR Paradox vs. Bell’s Inequalities Violation  [PDF]
Olivier Serret
Journal of Modern Physics (JMP) , 2015, DOI: 10.4236/jmp.2015.613201
Abstract: Quantum Mechanics formalism remains difficult to understand and sometimes is confusing, especially in the explanation of ERP paradox and of Bell’s inequalities with entanglement photons. So a chart of conversion, in which elements are named differently, is proposed. Next, experiment about Bell’s inequalities violation is described in another way, and we hope a clearer one. Main result is Bell’s inequalities would not be violated! The explanation would come from confusion between the definition of the correlation function S1, and a property S2. And consequently, Einstein, Podolski and Rosen would be right on the local “hidden” variable.
Page 1 /5341
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.