Abstract:
Random walks in random environments (RWRE's) have been a source of surprising phenomena and challenging problems since they began to be studied in the 70's. Hitting times and, more recently, certain regeneration structures, have played a major role in our understanding of RWRE's. We review these and provide some hints on current research directions and challenges.

Abstract:
We consider random hermitian matrices in which distant above-diagonal entries are independent but nearby entries may be correlated. We find the limit of the empirical distribution of eigenvalues by combinatorial methods. We also prove that the limit has algebraic Stieltjes transform by an argument based on dimension theory of noetherian local rings.

Abstract:
We derive properties of the rate function in Varadhan's (annealed) large deviation principle for multidimensional, ballistic random walk in random environment, in a certain neighborhood of the zero set of the rate function. Our approach relates the LDP to that of regeneration times and distances. The analysis of the latter is possible due to the i.i.d. structure of regenerations.

Abstract:
Let $\mathbb{T}$ denote a rooted $b$-ary tree and let $\{S_v\}_{v\in \mathbb{T}}$ denote a branching random walk indexed by the vertices of the tree, where the increments are i.i.d. and possess a logarithmic moment generating function $\Lambda(\cdot)$. Let $m_n$ denote the minimum of the variables $S_v$ over all vertices at the $n$th generation, denoted by $\mathbb{D}_n$. Under mild conditions, $m_n/n$ converges almost surely to a constant, which for convenience may be taken to be 0. With $\bar S_v=\max\{S_w:{\rm $w$ is on the geodesic connecting the root to $v$}\}$, define $L_n=\min_{v\in \mathbb{D}_n} \bar S_v$. We prove that $L_n/n^{1/3}$ converges almost surely to an explicit constant $l_0$. This answers a question of Hu and Shi.

Abstract:
We consider the maximum of the discrete two dimensional Gaussian free field (GFF) in a box, and prove that its maximum, centered at its mean, is tight, settling a long-standing conjecture. The proof combines a recent observation of Bolthausen, Deuschel and Zeitouni with elements from (Bramson 1978) and comparison theorems for Gaussian fields. An essential part of the argument is the precise evaluation, up to an error of order 1, of the expected value of the maximum of the GFF in a box. Related Gaussian fields, such as the GFF on a two-dimensional torus, are also discussed.

Abstract:
The theorem of Dekking and Host regarding tightness around the mean of first passage percolation on the binary tree, from the root to a boundary of a ball, is generalized to a class of graphs which includes all lattices in hyperbolic spaces and the lamplighter graph over N. This class of graphs is closed under product with any bounded degree graph. Few open problems and conjectures are gathered at the end.

Abstract:
We study the eigenvalues of non-normal square matrices of the form A_n=U_nT_nV_n with U_n,V_n independent Haar distributed on the unitary group and T_n real diagonal. We show that when the empirical measure of the eigenvalues of T_n converges, and T_n satisfies some technical conditions, all these eigenvalues lie in a single ring.

Abstract:
Recently, sharp results concerning the critical points of the Hamiltonian of the $p$-spin spherical spin glass model have been obtained by means of moments computations. In particular, these moments computations allow for the evaluation of the leading term of the ground-state, i.e., of the global minimum. In this paper, we study the extremal point process of critical points - that is, the point process associated to all critical values in the vicinity of the ground-state. We show that the latter converges in distribution to a Poisson point process of exponential intensity. In particular, we identify the correct centering of the ground-state and prove the convergence in distribution of the centered minimum to a (minus) Gumbel variable. These results are identical to what one obtains for a sequence of i.i.d variables, correctly normalized; namely, we show that the model is in the universality class of REM.

Abstract:
We consider the maximal displacement of one dimensional branching Brownian motion with (macroscopically) time varying profiles. For monotone decreasing variances, we show that the correction from linear displacement is not logarithmic but rather proportional to $T^{1/3}$. We conjecture that this is the worse case correction possible.