oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Search Results: 1 - 10 of 1622 matches for " Nir Friedman "
All listed articles are free for downloading (OA Articles)
Page 1 /1622
Display every page Item
The Bayesian Structural EM Algorithm
Nir Friedman
Computer Science , 2013,
Abstract: In recent years there has been a flurry of works on learning Bayesian networks from data. One of the hard problems in this area is how to effectively learn the structure of a belief network from incomplete data- that is, in the presence of missing values or hidden variables. In a recent paper, I introduced an algorithm called Structural EM that combines the standard Expectation Maximization (EM) algorithm, which optimizes parameters, with structure search for model selection. That algorithm learns networks based on penalized likelihood scores, which include the BIC/MDL score and various approximations to the Bayesian score. In this paper, I extend Structural EM to deal directly with Bayesian model selection. I prove the convergence of the resulting algorithm and show how to apply it for learning a large class of probabilistic models, including Bayesian networks and some variants thereof.
Dimension Reduction in Singularly Perturbed Continuous-Time Bayesian Networks
Nir Friedman,Raz Kupferman
Computer Science , 2012,
Abstract: Continuous-time Bayesian networks (CTBNs) are graphical representations of multi-component continuous-time Markov processes as directed graphs. The edges in the network represent direct influences among components. The joint rate matrix of the multi-component process is specified by means of conditional rate matrices for each component separately. This paper addresses the situation where some of the components evolve on a time scale that is much shorter compared to the time scale of the other components. In this paper, we prove that in the limit where the separation of scales is infinite, the Markov process converges (in distribution, or weakly) to a reduced, or effective Markov process that only involves the slow components. We also demonstrate that for reasonable separation of scale (an order of magnitude) the reduced process is a good approximation of the marginal process over the slow components. We provide a simple procedure for building a reduced CTBN for this effective process, with conditional rate matrices that can be directly calculated from the original CTBN, and discuss the implications for approximate reasoning in large systems.
On the Sample Complexity of Learning Bayesian Networks
Nir Friedman,Zohar Yakhini
Computer Science , 2013,
Abstract: In recent years there has been an increasing interest in learning Bayesian networks from data. One of the most effective methods for learning such networks is based on the minimum description length (MDL) principle. Previous work has shown that this learning procedure is asymptotically successful: with probability one, it will converge to the target distribution, given a sufficient number of samples. However, the rate of this convergence has been hitherto unknown. In this work we examine the sample complexity of MDL based learning procedures for Bayesian networks. We show that the number of samples needed to learn an epsilon-close approximation (in terms of entropy distance) with confidence delta is O((1/epsilon)^(4/3)log(1/epsilon)log(1/delta)loglog (1/delta)). This means that the sample complexity is a low-order polynomial in the error threshold and sub-linear in the confidence bound. We also discuss how the constants in this term depend on the complexity of the target distribution. Finally, we address questions of asymptotic minimality and propose a method for using the sample complexity results to speed up the learning process.
Learning Bayesian Networks with Local Structure
Nir Friedman,Moises Goldszmidt
Computer Science , 2013,
Abstract: In this paper we examine a novel addition to the known methods for learning Bayesian networks from data that improves the quality of the learned networks. Our approach explicitly represents and learns the local structure in the conditional probability tables (CPTs), that quantify these networks. This increases the space of possible models, enabling the representation of CPTs with a variable number of parameters that depends on the learned local structures. The resulting learning procedure is capable of inducing models that better emulate the real complexity of the interactions present in the data. We describe the theoretical foundations and practical aspects of learning local structures, as well as an empirical evaluation of the proposed method. This evaluation indicates that learning curves characterizing the procedure that exploits the local structure converge faster than these of the standard procedure. Our results also show that networks learned with local structure tend to be more complex (in terms of arcs), yet require less parameters.
The Information Bottleneck EM Algorithm
Gal Elidan,Nir Friedman
Computer Science , 2012,
Abstract: Learning with hidden variables is a central challenge in probabilistic graphical models that has important implications for many real-life problems. The classical approach is using the Expectation Maximization (EM) algorithm. This algorithm, however, can get trapped in local maxima. In this paper we explore a new approach that is based on the Information Bottleneck principle. In this approach, we view the learning problem as a tradeoff between two information theoretic objectives. The first is to make the hidden variables uninformative about the identity of specific instances. The second is to make the hidden variables informative about the observed attributes. By exploring different tradeoffs between these two objectives, we can gradually converge on a high-scoring solution. As we show, the resulting, Information Bottleneck Expectation Maximization (IB-EM) algorithm, manages to find solutions that are superior to standard EM methods.
Image Segmentation in Video Sequences: A Probabilistic Approach
Nir Friedman,Stuart Russell
Computer Science , 2013,
Abstract: "Background subtraction" is an old technique for finding moving objects in a video sequence for example, cars driving on a freeway. The idea is that subtracting the current image from a timeaveraged background image will leave only nonstationary objects. It is, however, a crude approximation to the task of classifying each pixel of the current image; it fails with slow-moving objects and does not distinguish shadows from moving objects. The basic idea of this paper is that we can classify each pixel using a model of how that pixel looks when it is part of different classes. We learn a mixture-of-Gaussians classification model for each pixel using an unsupervised technique- an efficient, incremental version of EM. Unlike the standard image-averaging approach, this automatically updates the mixture component for each class according to likelihood of membership; hence slow-moving objects are handled perfectly. Our approach also identifies and eliminates shadows much more effectively than other techniques such as thresholding. Application of this method as part of the Roadwatch traffic surveillance project is expected to result in significant improvements in vehicle identification and tracking.
Sequential Update of Bayesian Network Structure
Nir Friedman,Moises Goldszmidt
Computer Science , 2013,
Abstract: There is an obvious need for improving the performance and accuracy of a Bayesian network as new data is observed. Because of errors in model construction and changes in the dynamics of the domains, we cannot afford to ignore the information in new data. While sequential update of parameters for a fixed structure can be accomplished using standard techniques, sequential update of network structure is still an open problem. In this paper, we investigate sequential update of Bayesian networks were both parameters and structure are expected to change. We introduce a new approach that allows for the flexible manipulation of the tradeoff between the quality of the learned networks and the amount of information that is maintained about past observations. We formally describe our approach including the necessary modifications to the scoring functions for learning Bayesian networks, evaluate its effectiveness through an empirical study, and extend it to the case of missing data.
Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence (2002)
Adnan Darwiche,Nir Friedman
Computer Science , 2013,
Abstract: This is the Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, which was held in Alberta, Canada, August 1-4 2002
Being Bayesian about Network Structure
Nir Friedman,Daphne Koller
Computer Science , 2013,
Abstract: In many domains, we are interested in analyzing the structure of the underlying distribution, e.g., whether one variable is a direct parent of the other. Bayesian model-selection attempts to find the MAP model and use its structure to answer these questions. However, when the amount of available data is modest, there might be many models that have non-negligible posterior. Thus, we want compute the Bayesian posterior of a feature, i.e., the total posterior probability of all models that contain it. In this paper, we propose a new approach for this task. We first show how to efficiently compute a sum over the exponential number of networks that are consistent with a fixed ordering over network variables. This allows us to compute, for a given ordering, both the marginal probability of the data and the posterior of a feature. We then use this result as the basis for an algorithm that approximates the Bayesian posterior of a feature. Our approach uses a Markov Chain Monte Carlo (MCMC) method, but over orderings rather than over network structures. The space of orderings is much smaller and more regular than the space of structures, and has a smoother posterior `landscape'. We present empirical results on synthetic and real-life datasets that compare our approach to full model averaging (when possible), to MCMC over network structures, and to a non-Bayesian bootstrap approach.
Learning the Dimensionality of Hidden Variables
Gal Elidan,Nir Friedman
Computer Science , 2013,
Abstract: A serious problem in learning probabilistic models is the presence of hidden variables. These variables are not observed, yet interact with several of the observed variables. Detecting hidden variables poses two problems: determining the relations to other variables in the model and determining the number of states of the hidden variable. In this paper, we address the latter problem in the context of Bayesian networks. We describe an approach that utilizes a score-based agglomerative state-clustering. As we show, this approach allows us to efficiently evaluate models with a range of cardinalities for the hidden variable. We show how to extend this procedure to deal with multiple interacting hidden variables. We demonstrate the effectiveness of this approach by evaluating it on synthetic and real-life data. We show that our approach learns models with hidden variables that generalize better and have better structure than previous approaches.
Page 1 /1622
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.