Abstract:
Sinc methods are now recognized as an efficient numerical method for problems whose solutions may have singularities, or infinite domains, or boundary layers. This work deals with the sinc-collocation method for solving linear and nonlinear system of second order differential equation. The method is then tested on linear and nonlinear examples and a comparison with B-spline method is made. It is shown that the sinc-collocation method yields better results.

A new algorithm is presented for solving Troesch’s
problem. The numerical scheme based on the sinc-collocation technique is
deduced. The equation is reduced to systems of nonlinear algebraic equations.
Some numerical experiments are made. Compared with the modified homotopy
perturbation technique (MHP), the variational iteration method and the Adomian
decomposition method. It is shown that the sinc-collocation method yields
better results.

Abstract:
In this work, we present a computational method for solving eigenvalue problems of fourth-order ordinary differential equations which based on the use of Chebychev method. The efficiency of the method is demonstrated by three numerical examples. Comparison results with others will be presented.

A numerical method based on B-spline is
developed to solve the time-dependent Emden-Fow- ler-type equations. We also present a reliable
new algorithm based on B-spline to overcome the difficulty of the singular
point at x = 0. The error analysis of the method is described. Numerical results are
given to illustrate the efficiency of the proposed method.

In this paper, collocation method based on Bernoulli and Galerkin
method based on wavelet are proposed for solving nonhomogeneous
heat and wave equations. The two methods have the linear systems
solved by suitable solvers. Several examples are given to examine
the performance of these methods and a comparison is made.

There are few numerical techniques available to solve the Bagley-Torvik equation
which occurs considerably frequently in various offshoots of applied mathematics
and mechanics. In this paper, we show that Chelyshkov-tau method
is a very effective tool in numerically solving this equation. To show the accuracy
and the efficiency of the method, several problems are implemented and
the comparisons are given with other methods existing in the recent literature.
The results of numerical tests confirm that Chelyshkov-tau method is superior
to other existing ones and is highly accurate.

Abstract:
Building upon the pioneering work of J. Bell [1] and an incredible result due to L. Hardy [2] it was shown that the probability of quantum entanglement of two particles is a maximum of 9.0169945 percent [2]. This happens to be exactly the golden mean to the power of five (?5) [3-7]. Although it has gone largely unnoticed for a long time, this result was essentially established independently in a much wider context by the present author almost two decades ago [3-6]. The present work gives two fundamentally different derivations of Hardy’s beautiful result leading to precisely the same general conclusion, namely that by virtue of the zero measure of the underlying Cantorian-fractal spacetime geometry the notion of spatial separability in quantum physics is devoid of any meaning [7]. The first derivation is purely logical and uses a probability theory which combines the discrete with the continuum. The second derivation is purely geometrical and topological using the fundamental equations of a theory developed by the author and his collaborators frequently referred to as E-infinity or Cantorian spacetime theory [3-7].

Abstract:
The paper presents an exact analysis leading to an accurate theoretical prediction of the amount of the mysteriously missing hypothetical dark energy density in the cosmos. The value found, namely 95.4915028% is in full agreement with earlier analysis, the WMAP and the supernova cosmic measurements. The work follows first the strategy of finding a critical point which separates a semi-classical regime from a fully relativistic domain given by topological unit interval velocity parameter then proceeds to wider aspects of a topological quantum field of fractal unit interval. This idea of a critical velocity parameter was first advanced by Sigalotti and Mejias in 2006 who proposed a critical value equal . A second interesting proposal made in 2012 by Hendi and Sharifzadeh set the critical point at 0.8256645. The present analysis is based upon a light cone velocity quantized coordinate. This leads to the same quantum relativity energy mass relation found in earlier publications by rescaling that of Einstein’s special relativity. Two effective quantum gravity formulae are obtained. The first is for the ordinary measurable energy of the quantum particle while the second is for dark energy density of the quantum wave which we cannot measure directly and we can only infer its existence from the measured accelerated expansion of the universe E(D)=where . The critical velocity parameter in this case arises naturally to be . The results so obtained are validated using a heuristic Lorentzian transformation. Finally the entire methodology is put into the wider perspective of a fundamental scaling theory for the Planck scale proposed by G. Gross.

We reason that in quantum cosmology there are two kinds of energy. The first is the ordinary energy of the quantum particle which we can measure. The second is the dark energy of the quantum wave by quantum duality. Because measurement collapses the Hawking-Hartle quantum wave of the cosmos, dark energy cannot be detected or measured in any conventional manner. The quantitative results are confirmed using some exact solutions for the hydrogen atom. In particular the ordinary energy of the quantum particle is given by E(0) = (/2)(mc^{2}) where is Hardy’s probability of quantum entanglement,^{ }=( - 1)/2 is the Hausdorff dimension of the zero measure thin Cantor set modeling the quantum particle, while the dark energy of the quantum wave is given by E(D) = (5/2)(mc^{2}) where is the Hausdorff dimension of the positive measure thick empty Cantor set modeling the quantum wave and the factor five (5) is the Kaluza-Klein spacetime dimension to which the measure zero thin Cantor set D(0) = (0,) and the thick empty set D(-1) = (1,) must be lifted to give the five dimensional analogue sets namely

The paper concludes that the energy given by Einstein’s famous formula E=mc^{2} consists of two parts. The first part is the positive energy of the quantum particle modeled by the topology of the zero set. The second part is the absolute value of the negative energy of the quantum Schr?dinger wave modeled by the topology of the empty set. We reason that the latter is nothing else but the so called missing dark energy of the universe which accounts for 94.45% of the total energy, in full agreement with the WMAP and Supernova cosmic measurement which was awarded the 2011 Nobel Prize in Physics. The dark energy of the quantum wave cannot be detected in the normal way because measurement collapses the quantum wave.