oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2019 ( 204 )

2018 ( 351 )

2017 ( 334 )

2016 ( 493 )

Custom range...

Search Results: 1 - 10 of 311395 matches for " Mark J. Rieder? "
All listed articles are free for downloading (OA Articles)
Page 1 /311395
Display every page Item
VKORC1 Common Variation and Bone Mineral Density in the Third National Health and Nutrition Examination Survey
Dana C. Crawford,Kristin Brown-Gentry,Mark J. Rieder
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0015088
Abstract: Osteoporosis, defined by low bone mineral density (BMD), is common among postmenopausal women. The distribution of BMD varies across populations and is shaped by both environmental and genetic factors. Because the candidate gene vitamin K epoxide reductase complex subunit 1 (VKORC1) generates vitamin K quinone, a cofactor for the gamma-carboxylation of bone-related proteins such as osteocalcin, we hypothesized that VKORC1 genetic variants may be associated with BMD and osteoporosis in the general population. To test this hypothesis, we genotyped six VKORC1 SNPs in 7,159 individuals from the Third National Health and Nutrition Examination Survey (NHANES III). NHANES III is a nationally representative sample linked to health and lifestyle variables including BMD, which was measured using dual energy x-ray absorptiometry (DEXA) on four regions of the proximal femur. In adjusted models stratified by race/ethnicity and sex, SNPs rs9923231 and rs9934438 were associated with increased BMD (p = 0.039 and 0.024, respectively) while rs8050894 was associated with decreased BMD (p = 0.016) among non-Hispanic black males (n = 619). VKORC1 rs2884737 was associated with decreased BMD among Mexican-American males (n = 795; p = 0.004). We then tested for associations between VKORC1 SNPs and osteoporosis, but the results did not mirror the associations observed between VKORC1 and BMD, possibly due to small numbers of cases. This is the first report of VKORC1 common genetic variation associated with BMD, and one of the few reports available that investigate the genetics of BMD and osteoporosis in diverse populations.
Allele Frequency Matching Between SNPs Reveals an Excess of Linkage Disequilibrium in Genic Regions of the Human Genome
Michael A Eberle ,Mark J Rieder,Leonid Kruglyak,Deborah A Nickerson
PLOS Genetics , 2006, DOI: 10.1371/journal.pgen.0020142
Abstract: Significant interest has emerged in mapping genetic susceptibility for complex traits through whole-genome association studies. These studies rely on the extent of association, i.e., linkage disequilibrium (LD), between single nucleotide polymorphisms (SNPs) across the human genome. LD describes the nonrandom association between SNP pairs and can be used as a metric when designing maximally informative panels of SNPs for association studies in human populations. Using data from the 1.58 million SNPs genotyped by Perlegen, we explored the allele frequency dependence of the LD statistic r2 both empirically and theoretically. We show that average r2 values between SNPs unmatched for allele frequency are always limited to much less than 1 (theoretical approximately 0.46 to 0.57 for this dataset). Frequency matching of SNP pairs provides a more sensitive measure for assessing the average decay of LD and generates average r2 values across nearly the entire informative range (from 0 to 0.89 through 0.95). Additionally, we analyzed the extent of perfect LD (r2 = 1.0) using frequency-matched SNPs and found significant differences in the extent of LD in genic regions versus intergenic regions. The SNP pairs exhibiting perfect LD showed a significant bias for derived, nonancestral alleles, providing evidence for positive natural selection in the human genome.
Population History and Natural Selection Shape Patterns of Genetic Variation in 132 Genes
Joshua M. Akey,Michael A. Eberle,Mark J. Rieder,Christopher S. Carlson,Mark D. Shriver,Deborah A. Nickerson,Leonid Kruglyak
PLOS Biology , 2012, DOI: 10.1371/journal.pbio.0020286
Abstract: Identifying regions of the human genome that have been targets of natural selection will provide important insights into human evolutionary history and may facilitate the identification of complex disease genes. Although the signature that natural selection imparts on DNA sequence variation is difficult to disentangle from the effects of neutral processes such as population demographic history, selective and demographic forces can be distinguished by analyzing multiple loci dispersed throughout the genome. We studied the molecular evolution of 132 genes by comprehensively resequencing them in 24 African-Americans and 23 European-Americans. We developed a rigorous computational approach for taking into account multiple hypothesis tests and demographic history and found that while many apparent selective events can instead be explained by demography, there is also strong evidence for positive or balancing selection at eight genes in the European-American population, but none in the African-American population. Our results suggest that the migration of modern humans out of Africa into new environments was accompanied by genetic adaptations to emergent selective forces. In addition, a region containing four contiguous genes on Chromosome 7 showed striking evidence of a recent selective sweep in European-Americans. More generally, our results have important implications for mapping genes underlying complex human diseases.
Population History and Natural Selection Shape Patterns of Genetic Variation in 132 Genes
Joshua M Akey ,Michael A Eberle,Mark J Rieder,Christopher S Carlson,Mark D Shriver,Deborah A Nickerson,Leonid Kruglyak
PLOS Biology , 2004, DOI: 10.1371/journal.pbio.0020286
Abstract: Identifying regions of the human genome that have been targets of natural selection will provide important insights into human evolutionary history and may facilitate the identification of complex disease genes. Although the signature that natural selection imparts on DNA sequence variation is difficult to disentangle from the effects of neutral processes such as population demographic history, selective and demographic forces can be distinguished by analyzing multiple loci dispersed throughout the genome. We studied the molecular evolution of 132 genes by comprehensively resequencing them in 24 African-Americans and 23 European-Americans. We developed a rigorous computational approach for taking into account multiple hypothesis tests and demographic history and found that while many apparent selective events can instead be explained by demography, there is also strong evidence for positive or balancing selection at eight genes in the European-American population, but none in the African-American population. Our results suggest that the migration of modern humans out of Africa into new environments was accompanied by genetic adaptations to emergent selective forces. In addition, a region containing four contiguous genes on Chromosome 7 showed striking evidence of a recent selective sweep in European-Americans. More generally, our results have important implications for mapping genes underlying complex human diseases.
Exome Sequencing of Phenotypic Extremes Identifies CAV2 and TMC6 as Interacting Modifiers of Chronic Pseudomonas aeruginosa Infection in Cystic Fibrosis
Mary J. Emond?,Tin Louie?,Julia Emerson?,Jessica X. Chong?,Rasika A. Mathias?,Michael R. Knowles?,Mark J. Rieder,Holly K. Tabor?,Debbie A. Nickerson?,Kathleen C. Barnes
PLOS Genetics , 2015, DOI: 10.1371/journal.pgen.1005273
Abstract: Discovery of rare or low frequency variants in exome or genome data that are associated with complex traits often will require use of very large sample sizes to achieve adequate statistical power. For a fixed sample size, sequencing of individuals sampled from the tails of a phenotype distribution (i.e., extreme phenotypes design) maximizes power and this approach was recently validated empirically with the discovery of variants in DCTN4 that influence the natural history of P. aeruginosa airway infection in persons with cystic fibrosis (CF; MIM219700). The increasing availability of large exome/genome sequence datasets that serve as proxies for population-based controls affords the opportunity to test an alternative, potentially more powerful and generalizable strategy, in which the frequency of rare variants in a single extreme phenotypic group is compared to a control group (i.e., extreme phenotype vs. control population design). As proof-of-principle, we applied this approach to search for variants associated with risk for age-of-onset of chronic P. aeruginosa airway infection among individuals with CF and identified variants in CAV2 and TMC6 that were significantly associated with group status. These results were validated using a large, prospective, longitudinal CF cohort and confirmed a significant association of a variant in CAV2 with increased age-of-onset of P. aeruginosa airway infection (hazard ratio = 0.48, 95% CI=[0.32, 0.88]) and variants in TMC6 with diminished age-of-onset of P. aeruginosa airway infection (HR = 5.4, 95% CI=[2.2, 13.5]) A strong interaction between CAV2 and TMC6 variants was observed (HR=12.1, 95% CI=[3.8, 39]) for children with the deleterious TMC6 variant and without the CAV2 protective variant. Neither gene showed a significant association using an extreme phenotypes design, and conditions for which the power of an extreme phenotype vs. control population design was greater than that for the extreme phenotypes design were explored.
Variation in LPA Is Associated with Lp(a) Levels in Three Populations from the Third National Health and Nutrition Examination Survey
Logan Dumitrescu,Kimberly Glenn,Kristin Brown-Gentry,Cynthia Shephard,Michelle Wong,Mark J. Rieder,Joshua D. Smith,Deborah A. Nickerson,Dana C. Crawford
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0016604
Abstract: The distribution of lipoprotein(a) [Lp(a)] levels can differ dramatically across diverse racial/ethnic populations. The extent to which genetic variation in LPA can explain these differences is not fully understood. To explore this, 19 LPA tagSNPs were genotyped in 7,159 participants from the Third National Health and Nutrition Examination Survey (NHANES III). NHANES III is a diverse population-based survey with DNA samples linked to hundreds of quantitative traits, including serum Lp(a). Tests of association between LPA variants and transformed Lp(a) levels were performed across the three different NHANES subpopulations (non-Hispanic whites, non-Hispanic blacks, and Mexican Americans). At a significance threshold of p<0.0001, 15 of the 19 SNPs tested were strongly associated with Lp(a) levels in at least one subpopulation, six in at least two subpopulations, and none in all three subpopulations. In non-Hispanic whites, three variants were associated with Lp(a) levels, including previously known rs6919246 (p = 1.18×10?30). Additionally, 12 and 6 variants had significant associations in non-Hispanic blacks and Mexican Americans, respectively. The additive effects of these associated alleles explained up to 11% of the variance observed for Lp(a) levels in the different racial/ethnic populations. The findings reported here replicate previous candidate gene and genome-wide association studies for Lp(a) levels in European-descent populations and extend these findings to other populations. While we demonstrate that LPA is an important contributor to Lp(a) levels regardless of race/ethnicity, the lack of generalization of associations across all subpopulations suggests that specific LPA variants may be contributing to the observed Lp(a) between-population variance.
Error analysis for mesospheric temperature profiling by absorptive occultation sensors
M. J. Rieder,G. Kirchengast
Annales Geophysicae (ANGEO) , 2003,
Abstract: An error analysis for mesospheric profiles retrieved from absorptive occultation data has been performed, starting with realistic error assumptions as would apply to intensity data collected by available high-precision UV photodiode sensors. Propagation of statistical errors was investigated through the complete retrieval chain from measured intensity profiles to atmospheric density, pressure, and temperature profiles. We assumed unbiased errors as the occultation method is essentially self-calibrating and straight-line propagation of occulted signals as we focus on heights of 50–100 km, where refractive bending of the sensed radiation is negligible. Throughout the analysis the errors were characterized at each retrieval step by their mean profile, their covariance matrix and their probability density function (pdf). This furnishes, compared to a variance-only estimation, a much improved insight into the error propagation mechanism. We applied the procedure to a baseline analysis of the performance of a recently proposed solar UV occultation sensor (SMAS – Sun Monitor and Atmospheric Sounder) and provide, using a reasonable exponential atmospheric model as background, results on error standard deviations and error correlation functions of density, pressure, and temperature profiles. Two different sensor photodiode assumptions are discussed, respectively, diamond diodes (DD) with 0.03% and silicon diodes (SD) with 0.1% (unattenuated intensity) measurement noise at 10 Hz sampling rate. A factor-of-2 margin was applied to these noise values in order to roughly account for unmodeled cross section uncertainties. Within the entire height domain (50–100 km) we find temperature to be retrieved to better than 0.3 K (DD) / 1 K (SD) accuracy, respectively, at 2 km height resolution. The results indicate that absorptive occultations acquired by a SMAS-type sensor could provide mesospheric profiles of fundamental variables such as temperature with unprecedented accuracy and vertical resolution. A major part of the error analysis also applies to refractive (e.g., Global Navigation Satellite System based) occultations as well as to any temperature profile retrieval based on air density or major species density measurements (e.g., from Rayleigh lidar or falling sphere techniques). Key words. Atmospheric composition and structure (pressure, density, and temperature; instruments and techniques) – Radio science (remote sensing)
Identification, Replication, and Functional Fine-Mapping of Expression Quantitative Trait Loci in Primary Human Liver Tissue
Federico Innocenti equal contributor,Gregory M. Cooper equal contributor,Ian B. Stanaway,Eric R. Gamazon,Joshua D. Smith,Snezana Mirkov,Jacqueline Ramirez,Wanqing Liu,Yvonne S. Lin,Cliona Moloney,Shelly Force Aldred,Nathan D. Trinklein,Erin Schuetz,Deborah A. Nickerson,Ken E. Thummel,Mark J. Rieder,Allan E. Rettie,Mark J. Ratain,Nancy J. Cox,Christopher D. Brown
PLOS Genetics , 2011, DOI: 10.1371/journal.pgen.1002078
Abstract: The discovery of expression quantitative trait loci (“eQTLs”) can help to unravel genetic contributions to complex traits. We identified genetic determinants of human liver gene expression variation using two independent collections of primary tissue profiled with Agilent (n = 206) and Illumina (n = 60) expression arrays and Illumina SNP genotyping (550K), and we also incorporated data from a published study (n = 266). We found that ~30% of SNP-expression correlations in one study failed to replicate in either of the others, even at thresholds yielding high reproducibility in simulations, and we quantified numerous factors affecting reproducibility. Our data suggest that drug exposure, clinical descriptors, and unknown factors associated with tissue ascertainment and analysis have substantial effects on gene expression and that controlling for hidden confounding variables significantly increases replication rate. Furthermore, we found that reproducible eQTL SNPs were heavily enriched near gene starts and ends, and subsequently resequenced the promoters and 3′UTRs for 14 genes and tested the identified haplotypes using luciferase assays. For three genes, significant haplotype-specific in vitro functional differences correlated directly with expression levels, suggesting that many bona fide eQTLs result from functional variants that can be mechanistically isolated in a high-throughput fashion. Finally, given our study design, we were able to discover and validate hundreds of liver eQTLs. Many of these relate directly to complex traits for which liver-specific analyses are likely to be relevant, and we identified dozens of potential connections with disease-associated loci. These included previously characterized eQTL contributors to diabetes, drug response, and lipid levels, and they suggest novel candidates such as a role for NOD2 expression in leprosy risk and C2orf43 in prostate cancer. In general, the work presented here will be valuable for future efforts to precisely identify and functionally characterize genetic contributions to a variety of complex traits.
Genome-Wide Association of Lipid-Lowering Response to Statins in Combined Study Populations
Mathew J. Barber,Lara M. Mangravite,Craig L. Hyde,Daniel I. Chasman,Joshua D. Smith,Catherine A. McCarty,Xiaohui Li,Russell A. Wilke,Mark J. Rieder,Paul T. Williams,Paul M. Ridker,Aurobindo Chatterjee,Jerome I. Rotter,Deborah A. Nickerson,Matthew Stephens,Ronald M. Krauss
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0009763
Abstract: Statins effectively lower total and plasma LDL-cholesterol, but the magnitude of decrease varies among individuals. To identify single nucleotide polymorphisms (SNPs) contributing to this variation, we performed a combined analysis of genome-wide association (GWA) results from three trials of statin efficacy.
Rapid Microbiological Testing: Monitoring the Development of Bacterial Stress
Boris Zavizion,Zhihui Zhao,Aphakorn Nittayajarn,Ronald J. Rieder
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0013374
Abstract: The ability to respond to adverse environments effectively along with the ability to reproduce are sine qua non conditions for all sustainable cellular forms of life. Given the availability of an appropriate sensing modality, the ubiquity and immediacy of the stress response could form the basis for a new approach for rapid biological testing. We have found that measuring the dielectric permittivity of a cellular suspension, an easily measurable electronic property, is an effective way to monitor the response of bacterial cells to adverse conditions continuously. The dielectric permittivity of susceptible and resistant strains of Escherichia coli and Staphylococcus aureus, treated with gentamicin and vancomycin, were measured directly using differential impedance sensing methods and expressed as the Normalized Impedance Response (NIR). These same strains were also heat-shocked and chemically stressed with Triton X-100 or H2O2. The NIR profiles obtained for antibiotic-treated susceptible organisms showed a strong and continuous decrease in value. In addition, the intensity of the NIR value decrease for susceptible cells varied in proportion to the amount of antibiotic added. Qualitatively similar profiles were found for the chemically treated and heat-shocked bacteria. In contrast, antibiotic-resistant cells showed no change in the NIR values in the presence of the drug to which it is resistant. The data presented here show that changes in the dielectric permittivity of a cell suspension are directly correlated with the development of a stress response as well as bacterial recovery from stressful conditions. The availability of a practical sensing modality capable of monitoring changes in the dielectric properties of stressed cells could have wide applications in areas ranging from the detection of bacterial infections in clinical specimens to antibiotic susceptibility testing and drug discovery.
Page 1 /311395
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.