oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2019 ( 5 )

2018 ( 36 )

2017 ( 40 )

2016 ( 45 )

Custom range...

Search Results: 1 - 10 of 17883 matches for " Mark Gurwell "
All listed articles are free for downloading (OA Articles)
Page 1 /17883
Display every page Item
Blazar 3C 454.3 in Outburst and Quiescence During 2005-2007: Two Variable Synchrotron Emission Peaks
Patrick M. Ogle,Ann E. Wehrle,Thomas Balonek,Mark A. Gurwell
Physics , 2010, DOI: 10.1088/0067-0049/195/2/19
Abstract: We monitored the flaring blazar 3C 454.3 during 2005 June-July with the Spitzer Infrared Spectrograph (IRS: 15 epochs), Infrared Array Camera (IRAC: 12 epochs) and Multiband Imaging Photometer (MIPS: 2 epochs). We also made Spitzer IRS, IRAC, and MIPS observations from 2006 December-2007 January when the source was in a low state, the latter simultaneous with a single Chandra X-ray observation. In addition, we present optical and sub-mm monitoring data. The 2005-2007 period saw 3 major outbursts. We present evidence that the radio-optical SED actually consists of two variable synchrotron peaks, the primary at IR and the secondary at sub-mm wavelengths. The lag between the optical and sub-mm outbursts may indicate that these two peaks arise from two distinct regions along the jet separated by a distance of 0.07-5 pc. The flux at 5-35 microns varied by a factor of 40 and the IR peak varied in frequency from <1E13 Hz to 4E13 Hz between the highest and lowest states in 2005 and 2006, respectively. Variability was well correlated across the mid-IR band, with no measurable lag. Flares that doubled in flux occurred on a time scale of 3 days. The IR SED peak moved to higher frequency as a flare brightened, then returned to lower frequency as it decayed. The fractional variability amplitude increased with frequency, which we attribute to decreasing synchrotron-self absorption optical depth. Mid-IR flares may signal the re-energization of a shock that runs into inhomogeneities along the pre-existing jet or in the external medium. The synchrotron peak frequencies during each major outburst may depend upon both the distance from the jet apex and the physical conditions in the shocks. Variation of the Doppler parameter along a curved or helical jet is another possibility. Frequency variability of the IR synchrotron peak may have important consequences for the interpretation of the blazar sequence, and the presence of a secondary peak may give insight into jet structure.
Submillimeter Variability and the Gamma-ray Connection in Fermi Blazars
Allison L. Strom,Aneta Siemiginowska,Mark A. Gurwell,Brandon C. Kelly
Physics , 2010,
Abstract: We present multi-epoch observations from the Submillimeter Array (SMA) for a sample of 171 bright blazars, 43 of which were detected by Fermi during the first three months of observations. We explore the correlation between their gamma-ray properties and submillimeter observations of their parsec-scale jets, with a special emphasis on spectral index in both bands and the variability of the synchrotron component. Subclass is determined using a combination of Fermi designation and the Candidate Gamma-Ray Blazar Survey (CGRaBS), resulting in 35 BL Lac objects and 136 flat-spectrum radio quasars (FSRQs) in our total sample. We calculate submillimeter energy spectral indices using contemporaneous observations in the 1 mm and 850 micron bands during the months August-October 2008. The submillimeter light curves are modeled as first-order continuous autoregressive processes, from which we derive characteristic timescales. Our blazar sample exhibits no differences in submillimeter variability amplitude or characteristic timescale as a function of subclass or luminosity. All of the the light curves are consistent with being produced by a single process that accounts for both low and high states, and there is additional evidence that objects may be transitioning between blazar class during flaring epochs.
Peculiar Near-Nucleus Outgassing of Comet 17P/Holmes During Its 2007 Outburst
Chunhua Qi,Michiel R. Hogerheijde,David Jewitt,Mark A. Gurwell,David J. Wilner
Physics , 2014, DOI: 10.1088/0004-637X/799/1/110
Abstract: We present high angular resolution Submillimeter Array observations ofthe outbursting Jupiter family comet 17P/Holmes on 2007 October 26-29, achieving a spatial resolution of 2.5", or ~3000 km at the comet distance. The observations resulted in detections of the rotational lines CO 3-2, HCN 4-3, H$^{13}$CN 4-3, CS 7-6, H$_2$CO 3$_{1,2}$-2$_{1,1}$, H$_2$S 2$_{2,0}$-2$_{1,1}$, and multiple CH$_3$OH lines, along with the associated dust continuum at 221 and 349 GHz. The continuum has a spectral index of 2.7$\pm$0.3, slightly steeper than blackbody emission from large dust particles. From the imaging data, we identify two components in the molecular emission. One component is characterized by a relatively broad line width (~1 km s$^{-1}$ FWHM) exhibiting a symmetric outgassing pattern with respect to the nucleus position. The second component has a narrower line width (<0.5 km s$^{-1}$ FWHM) with the line center red-shifted by 0.1-0.2 km s$^{-1}$ (cometocentric frame), and shows a velocity shift across the nucleus position with the position angle gradually changing from 66 to 30 degrees within the four days of observations. We determine distinctly different CO/HCN ratios for each of the components. For the broad-line component we find CO/HCN <7, while in the narrow-line component, CO/HCN = 40$\pm$5. We hypothesize that the narrow-line component originates from the ice grain halo found in near-nucleus photometry, believed to be created by sublimating recently released ice grains around the nucleus during the outburst. In this interpretation, the high CO/HCN ratio of this component reflects the more pristine volatile composition of nucleus material released in the outburst.
A Black Hole Mass-Variability Time Scale Correlation at Submillimeter Wavelengths
Geoffrey C. Bower,Jason Dexter,Sera Markoff,Mark A. Gurwell,Ramprasad Rao,Ian McHardy
Physics , 2015, DOI: 10.1088/2041-8205/811/1/L6
Abstract: We analyze the light curves of 413 radio sources at submillimeter wavelengths using data from the Submillimeter Array calibrator database. The database includes more than 20,000 observations at 1.3 and 0.8 mm that span 13 years. We model the light curves as a damped random walk and determine a characteristic time scale $\tau$ at which the variability amplitude saturates. For the vast majority of sources, primarily blazars and BL Lac objects, we find only lower limits on $\tau$. For two nearby low luminosity active galactic nuclei, M81 and M87, however, we measure $\tau=1.6^{+3.0}_{-0.9}$ days and $\tau=45^{+61}_{-24}$ days, respectively ($2\sigma$ errors). Including the previously measured $\tau=0.33\pm 0.16$ days for Sgr A*, we show an approximately linear correlation between $\tau$ and black hole mass for these nearby LLAGN. Other LLAGN with spectra that peak in the submm are expected to follow this correlation. These characteristic time scales are comparable to the minimum time scale for emission processes close to an event horizon, and suggest that the underlying physics may be independent of black hole mass, accretion rate, and jet luminosity.
Multiwavelength Spectral Studies Of Fermi-LAT Blazars
Manasvita Joshi,Alan Marscher,Svetlana Jorstad,Markus Boettcher,Ivan Agudo,Valeri Larionov,Margo Aller,Mark Gurwell,Anne Lahteenmaki
Physics , 2011,
Abstract: We present multiwavelength spectral analyses of two Fermi-LAT blazars, OJ 287 and 3C 279, that are part of the Boston University multiwaveband polarization program. The data have been compiled from observations with Fermi, RXTE, the VLBA, and various ground-based optical and radio telescopes. We simulate the dynamic spectral energy distributions (SEDs) within the framework of a multi-slice, time-dependent leptonic jet model for blazars, with radiation feedback, in the internal shock scenario. We use the physical jet parameters obtained from the VLBA monitoring to guide our modeling efforts. We discuss the role of intrinsic parameters and the interplay between synchrotron and inverse Compton radiation processes responsible for producing the resultant SEDs.
Gamma-ray emission region located in the parsec scale jet of OJ287
Ivan Agudo,Svetlana G. Jorstad,Alan P. Marscher,Valeri M. Larionov,Jose L. Gomez,Anne Lahteenmaki,Mark Gurwell,Paul S. Smith,Helmut Wiesemeyer,Clemens Thum,Jochen Heidt
Physics , 2011, DOI: 10.1088/1742-6596/355/1/012032
Abstract: We report on the location of the gamma-ray emission region in flares of the BL Lacertae object OJ287 at >14pc from the central supermassive black hole. We employ data from multi-spectral range (total flux and linear polarization) monitoring programs combined with sequences of ultra-high-resolution 7mm VLBA images. The correlation between the brightest gamma-ray and mm flares is found to be statistically significant. The two gamma-ray peaks, detected by Fermi-LAT, that we report here happened at the rising phase of two exceptionally bright mm flares accompanied by sharp linear polarization peaks. The VLBA images show that these mm flares in total flux and polarization degree occurred in a jet region at >14pc from the innermost jet region. The time coincidence of the brighter gamma-ray flare and its corresponding mm linear polarization peak evidences that both the gamma-ray and mm outbursts occur >14pc from the central black hole. We find two sharp optical flares occurring at the peak times of the two reported gamma-ray flares. This is interpreted as the gamma-ray flares being produced by synchrotron self-Compton scattering of optical photons from the flares triggered by the interaction of moving knots with a stationary conical shock in the jet.
Multiwavelength Spectral Study of 3C 279 in the Internal Shock Scenario
Manasvita Joshi,Svetlana Jorstad,Alan Marscher,Markus B?ttcher,Ivan Agudo,Valeri Larionov,Margo Aller,Mark Gurwell,Anne L?hteenm?ki
Physics , 2012,
Abstract: We have observed 3C~279 in a gamma-ray flaring state in November 2008. We construct quasi-simultaneous spectral energy distributions (SEDs) of the source for the flaring period of 2008 and during a quiescent period in May 2010. Data have been compiled from observations with Fermi, Swift, RXTE, the VLBA, and various ground-based optical and radio telescopes. The objective is to comprehend the correspondence between the flux and polarization variations observed during these two time periods by carrying out a detailed spectral analyses of 3C~279 in the internal shock scenario, and gain insights into the role of intrinsic parameters and interplay of synchrotron and inverse Compton radiation processes responsible for the two states. As a first step, we have used a multi-slice time-dependent leptonic jet model, in the framework of the internal shock scenario, with radiation feedback to simulate the SED of 3C~279 observed in an optical high state in early 2006. We have used physical jet parameters obtained from the VLBA monitoring to guide our modeling efforts. We briefly discuss the effects of intrinsic parameters and various radiation processes in producing the resultant SED.
Multiwavelength Variations of 3C 454.3 during the November 2010 to January 2011 Outburst
Ann E. Wehrle,Alan P. Marscher,Svetlana G. Jorstad,Mark A. Gurwell,Manasvita Joshi,Nicholas R. MacDonald,Karen E. Williamson,Ivan Agudo,Dirk Grupe
Physics , 2012, DOI: 10.1088/0004-637X/758/2/72
Abstract: We present multiwavelength data of the blazar 3C 454.3 obtained during an extremely bright outburst from November 2010 through January 2011. These include flux density measurements with the Herschel Space Observatory at five submillimeter-wave and far-infrared bands, the Fermi Large Area Telescope at gamma-ray energies, Swift at X-ray, ultraviolet (UV), and optical frequencies, and the Submillimeter Array at 1.3 mm. From this dataset, we form a series of 52 spectral energy distributions (SEDs) spanning nearly two months that are unprecedented in time coverage and breadth of frequency. Discrete correlation anlaysis of the millimeter, far-infrared, and gamma-ray light curves show that the variations were essentially simultaneous, indicative of co-spatiality of the emission, at these wavebands. In contrast, differences in short-term fluctuations at various wavelengths imply the presence of inhomegeneities in physical conditions across the source. We locate the site of the outburst in the parsec-scale core, whose flux density as measured on 7 mm Very Long Baseline Array images increased by 70 percent during the first five weeks of the outburst. Based on these considerations and guided by the SEDs, we propose a model in which turbulent plasma crosses a conical standing shock in the parsec-scale region of the jet. Here, the high-energy emission in the model is produced by inverse Compton scattering of seed photons supplied by either nonthermal radiation from a Mach disk, thermal emission from hot dust, or (for X-rays) synchrotron radiation from plasma that crosses the standing shock. For the two dates on which we fitted the model SED to the data, the model corresponds very well to the observations at all bands except at X-ray energies, where the spectrum is flatter than observed.
IRC+10216's Innermost Envelope -- The eSMA's View
Hiroko Shinnaga,Ken H. Young,Remo P. J. Tilanus,Richard Chamberlin,Mark A. Gurwell,David Wilner,A. Meredith Hughes,Hiroshige Yoshida,Ruisheng Peng,Brian Force,Per Friberg,Sandrine Bottinelli,Ewine F. Van Dishoeck,Thomas G. Phillips
Physics , 2009, DOI: 10.1088/0004-637X/727/1/60
Abstract: We used the Extended Submillimeter Array (eSMA) in its most extended configuration to investigate the innermost (within a radius of 290 R* from the star) circumstellar envelope (CSE) of IRC+10216. We imaged the CSE using HCN and other molecular lines with a beam size of 0."22 x 0."46, deeply into the very inner edge (15 R*) of the envelope where the expansion velocity is only 3 km/s. The excitation mechanism of hot HCN and KCl maser lines is discussed. HCN maser components are spatially resolved for the first time on an astronomical object. We identified two discrete regions in the envelope: a region with a radius of . 15 R*, where molecular species have just formed and the gas has begun to be accelerated (region I) and a shell region (region II) with a radius of 23 R* and a thickness of 15 R*, whose expansion velocity has reached up to 13 km/s, nearly the terminal velocity of 15 km/s. The Si$^{34}$S line detected in region I shows a large expansion velocity of 16 km/s due to strong wing components, indicating that the emission may arise from a shock region in the innermost envelope. In region II, the P.A. of the most copious mass loss direction was found to be 120 +/- 10 degrees, which may correspond to the equatorial direction of the star. Region II contains a torus-like feature. These two regions may have emerged due to significant differences in the size distributions of the dust particles in the two regions.
Radio and Millimeter Monitoring of Sgr A*: Spectrum, Variability, and Constraints on the G2 Encounter
Geoffrey C. Bower,Sera Markoff,Jason Dexter,Mark A. Gurwell,James M. Moran,Andreas Brunthaler,Heino Falcke,P. Chris Fragile,Dipankar Maitra,Dan Marrone,Alison Peck,Anthony Rushton,Melvyn C. H. Wright
Physics , 2015, DOI: 10.1088/0004-637X/802/1/69
Abstract: We report new observations with the Very Large Array, Atacama Large Millimeter Array, and Submillimeter Array at frequencies from 1.0 to 355 GHz of the Galactic Center black hole, Sagittarius A*. These observations were conducted between October 2012 and November 2014. While we see variability over the whole spectrum with an amplitude as large as a factor of 2 at millimeter wavelengths, we find no evidence for a change in the mean flux density or spectrum of Sgr A* that can be attributed to interaction with the G2 source. The absence of a bow shock at low frequencies is consistent with a cross-sectional area for G2 that is less than $2 \times 10^{29}$ cm$^2$. This result fits with several model predictions including a magnetically arrested cloud, a pressure-confined stellar wind, and a stellar photosphere of a binary merger. There is no evidence for enhanced accretion onto the black hole driving greater jet and/or accretion flow emission. Finally, we measure the millimeter wavelength spectral index of Sgr A* to be flat; combined with previous measurements, this suggests that there is no spectral break between 230 and 690 GHz. The emission region is thus likely in a transition between optically thick and thin at these frequencies and requires a mix of lepton distributions with varying temperatures consistent with stratification.
Page 1 /17883
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.