oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2019 ( 17 )

2018 ( 20 )

2017 ( 22 )

2016 ( 25 )

Custom range...

Search Results: 1 - 10 of 10083 matches for " Maira Segura-Campos "
All listed articles are free for downloading (OA Articles)
Page 1 /10083
Display every page Item
ACE-I inhibitory peptide fractions from enzymatic hydrolysates of velvet bean (Mucuna pruriens)  [PDF]
Maira Rubi Segura-Campos, Carlos Paul Espadas-Alcocer, Luis Chel-Guerrero, David Betancur-Ancona
Agricultural Sciences (AS) , 2013, DOI: 10.4236/as.2013.412105
Abstract:

The hydrolysis of velvet bean (Mucuna pruriens) protein in the presence of Alcalase?-Flavourzyme? and Pepsin-Pancreatin was investigated. The results showed that Alcalase?-Flavourzyme? (29.08%) sequential system catalyzed the hydrolysis most efficiently that Pepsin-Pancreatin (24.78%). In addition, the higher ACE-I inhibitory activity was achieved with the sequential system Alcalase?-Flavourzyme? (33.13%). Furthermore, the concentration of peptides employing an ultrafiltration (UF) system or their purification by gel filtration chromatography showed that the oligomeric peptides with lower molecular weight registered the highest ACE-I inhibitory activity. It has been demonstrated that Mucuna pruriens protein hydrolysates could serve as a source of peptides with ACE inhibitory activity and this activity can be attributed mainly to the mixture of short peptides in the hydrolysate.

Chemical and Functional Properties of Hard-to-Cook Bean (Phaseolus vulgaris) Protein Concentrate  [PDF]
Maira R. Segura-Campos, Jimena Cruz-Salas, Luis Chel-Guerrero, David Betancur-Ancona
Food and Nutrition Sciences (FNS) , 2014, DOI: 10.4236/fns.2014.521220
Abstract: The objective of this research was to evaluate the chemical and functional properties of hard-to-cook (HTC) bean (Phaseolus vulgaris) protein concentrate to determine their potential practical applications. The respective protein concentrate was obtained from the flour using isoelectric precipitation and the protein content was 73.03%. Proximate composition and in vitro digestibility were measured to evaluate the chemical properties, and nitrogen solubility, emulsifying capacity, emulsion stability, foaming capacity, foam stability and viscosity were measured to evaluate its functional properties. The proximate composition of the HTC bean (P. vulgaris) flour and protein concentrate registered values of moisture, ash, protein, fat, fiber and NFE of 8.92, 4.52, 21.71%, 4.41%, 4.11% and 65.25% for flour and of 2.68%, 2.54%, 73.03%, 2.77%, 1.31% and 20.35% for protein concentrate. The in vitro digestibility was of 76.7%. The hard-to-cook bean protein concentrate exhibited good functional properties suggesting its use as additive. This concentrate registered solubility values that are ranging from 2.5% to 71.81%. The emulsifying (EC) and foaming capacity (FC) registered values of 89% - 97% and of 7% - 53% at different pH levels, respectively as well as an emulsion (ES) and foaming stability (FS) pH- and time-dependent. The HTC bean (P. vulgaris) protein concentrate registered a viscosity profile dependent of shear rate. The results suggest that HTC bean (P. vulgaris) protein concentrate is a valuable food ingredient or additive.
Fiber Residues from Canavalia ensiformis L. Seeds with Potential Use in Food Industry  [PDF]
Maira Rubi Segura-Campos, Lourdes Manrique-Reynoso, Luis Chel-Guerrero, David Betancur-Ancona
Agricultural Sciences (AS) , 2014, DOI: 10.4236/as.2014.513131
Abstract:

The objective of this research was to determine the physicochemical characteristics of fiber residues from Jack bean (Canavalia ensiformis L.) obtained by two technological processes. The proximal composition of the fiber residues from Canavalia ensiformis registered values of moisture, ash, protein, fat, fiber and nitrogen-free extract (NFE) of 7.14%, 3.17%, 9.14%, 1.34%, ?23.84% and 62.51% for residue A and 4.74%, 2.68%, 7.73%, 1.39%, 23.76% and 64.44% for residue B. Total dietary fiber (TDF) contents in the fiber residues were 47.06 (Residue A) and 54.96 (Residue B) g/100g sample, with most of this content represented by insoluble dietary fiber (IDF) 45.46 g/100g sample in Residue A and 52.75 g/100g of sample in Residue B. The remainder was constituted by soluble dietary fiber (SDF). The neutral detergent fiber (NDF) content was slightly higher in residue B (41.8 g/100g sample). Acid detergent fiber (ADF) that includes principally cellulose, lignin and cutin, and acid detergent lignin (ADL) that include lignin and cutin were higher in residue B (32.5 g/100g sample) and similar for both residues (1.0 (A) and 1.2 (B) g/100g sample), respectively. Resistant starch (RS) was higher in residue B (0.607%) than in residue A (0.358%). No statistical difference (p > 0.05) was registered in the tannins content of both residues. However, the phytates content was higher in the fiber residue obtained by the fists technological process (A residue). In vitro digestibility was higher in residue A (85.81%) than that in B residue (81.51%). The results of the present study suggest the potential use of C. ensiformis fiber residues as a functional ingredient in foods, especially in the development of reduced calorie food and dietary fiber enriched foods.

Physicochemical and Functional Properties of Dehydrated Japanese Quail (Coturnix japonica) Egg White  [PDF]
Maira Segura-Campos, Roberto Pérez-Hernández, Luis Chel-Guerrero, Arturo Castellanos-Ruelas, Santiago Gallegos-Tintoré, David Betancur-Ancona
Food and Nutrition Sciences (FNS) , 2013, DOI: 10.4236/fns.2013.43039
Abstract:

Physicochemical, functional and digestibility analyses were done of dehydrated quail egg white to determine its possible practical applications. Quail egg white was dehydrated by air convection using one of two temperatures and times: M1 (65, 3.5 h), M2 (65, 5.0 h), M3 (70, 3.5 h) and M4 (70, 5.0 h). Lyophilized quail egg white was used as a standard. All four air-dried treatments had good protein levels (92.56% to 93.96%), with electrophoresis showing the predominant proteins to be lysozyme, ovalbumin and ovotransferin. Denaturation temperatures ranged from 81.16 to 83.85 and denaturation enthalpy values from 5.51 to 9.08 J/g. Treatments M1-4 had lower water-holding (0.90 - 2.95 g/g) and oil-holding (0.92 - 1.01 g/g) capacities than the lyophilized treatment (4.5 g/g, 1.95 g/g, respectively). Foaming capacity was pH-dependent in all five treatments, with the lowest values at alkaline pH and the highest (153% to 222%) at acid pH (pH 2). Foam stability was lowest at acid pH and highest at alkaline pH. Emulsifying activity in the air-dried treatments was highest at pH 8 (41% - 46%). Emulsion stability was pH-dependent and

Physicochemical characterization of chia (Salvia hispanica) seed oil from Yucatán, México  [PDF]
Maira Rubi Segura-Campos, Norma Ciau-Solís, Gabriel Rosado-Rubio, Luis Chel-Guerrero, David Betancur-Ancona
Agricultural Sciences (AS) , 2014, DOI: 10.4236/as.2014.53025
Abstract:

A physicochemical characterization of oil from chia seeds was carried out. Proximate composition analysis showed that fat and fiber were the principal components in the raw chia flour. Physical characterization showed that chia oil has a relative density from 0.9241, a refraction index of 1.4761 and a color with more yellow than red units. Chemical characterization showed that chia oil registered an acidity index of 2.053 mg KOH/g oil, a saponification index of 222.66 mg KOH/g oil, a content of unsaponifiable matter of 0.087%, an Iodine index of 193.45 g I/100 g oil and a peroxide index of 17.5 meq O2/kg oil. Chia oil showed a higher content of α and β linolenic and palmitic acids. Chia oil is the vegetable source with the highest content of essential fatty acids.

Physicochemical and Functional Characterization of Mucuna pruries Depigmented Starch for Potential Industrial Applications  [PDF]
Maira Rubi Segura-Campos, Sonia Marina López-Sánchez, Arturo Castellanos-Ruelas, David Betancur-Ancona, Luis Chel-Guerrero
International Journal of Organic Chemistry (IJOC) , 2015, DOI: 10.4236/ijoc.2015.51001
Abstract: Starch is a very important biopolymer in the food industry. The velvet bean (M. pruriens) is an excellent potential starch source containing approximately 520 g starch per kg. The objective of this study was to evaluate the physicochemical and functional properties of velvet bean depigmented starch. The starch granules appear oval and spherical shaped. The colour registered L*, a*, b* values of 44.9, 0.324 and 0.341 respectively. The chemical composition registered values of moisture, ash, fat, protein, fibre and NFE of 110.5, 5.8, 5.7, 0.0, 34 and 954.5 g/kg respectively, as well as amylose levels of 215.3 g/kg. Gelatinization onset (To), peak (Tp) and final (Tf) temperatures were of 74.23°C, 80.57°C and 86.39°C. The solubility (3.1% - 16.2%), swelling power (SP) (2.86% - 16.17%) and water absorption capacity (WAC) (2.67 - 15.95 g water/g starch) were directly correlated to temperature (60°C - 90°C). The enthalpy values (4.10 - 13.47 j/g) were directly correlated to the time (1 - 21 days). The retrogradation increased as time increased. The viscosity of M. pruriens depigmented starch decreased slightly during the heating stages and then increased during cooling and the refrigeration and freezing stability registered syneresis ranges from 17.65 to 23.18 mL/50mL and from 16.4 to 22.6 mL/50mL respectively, indicating that the depigmented starch was unstable in heating-cooling processes.
EFECTO DE LA DIGESTIóN EN LA BIODISPONIBILIDAD DE PéPTIDOS CON ACTIVIDAD BIOLóGICA
Segura-Campos,Maira; Chel-Guerrero,Luis; Betancur-Ancona,David;
Revista chilena de nutrición , 2010, DOI: 10.4067/S0717-75182010000300014
Abstract: the potential beneficial effect of the biopeptides depends on its capacity to reach intact the organs where they will carry out their function. however, once in the organism the peptides should cross a series of potential barriers that they should avoid in order not to be inactivated. the digestive enzymes, the absorption through the gastrointestinal tract and the sanguine proteases can produce the hydrolysis of them and to generate inactive fragments or with a higher activity that its sequence precursor. therefore, it is difficult to establish a direct relationship among the biological activity in vitro and in vivo, due mainly to the peptides bioavailability after oral administration. this should be taken into account at the moment to transfer the results from the investigation to the food industry for the elaboration and commercialization of nutraceutical products.
EFECTO DE LA DIGESTIóN EN LA BIODISPONIBILIDAD DE PéPTIDOS CON ACTIVIDAD BIOLóGICA EFFECT OF DIGESTION ON BIOAVALABILITY OF PEPTIDES WITH BIOLOGICAL ACTIVITY
Maira Segura-Campos,Luis Chel-Guerrero,David Betancur-Ancona
Revista Chilena de Nutricíon , 2010,
Abstract: El potencial efecto beneficioso de los biopéptidos depende de su capacidad para alcanzar intactos los órganos donde van a realizar su función. Sin embargo, una vez en el organismo dichos péptidos deben atravesar una serie de barreras potenciales que pueden inactivarlos. Las enzimas digestivas, la absorción a través del tracto gastrointestinal y las proteasas sanguíneas pueden producir la hidrólisis de los mismos y generar fragmentos inactivos o con una actividad mayor que su secuencia precursora. Por lo tanto, es difícil establecer una relación directa entre la actividad biológica in vitro e in vivo debido principalmente a la biodisponibilidad de los péptidos después de la administración oral. Esto debe ser tomado en cuenta en el momento de transferir los resultados de la investigación a la industria de alimentos para la elaboración y comercialización de productos nutracéuticos. Palabras clave: Péptidos, actividad biológica, digestión, absorción, biodisponibilidad. The potential beneficial effect of the biopeptides depends on its capacity to reach intact the organs where they will carry out their function. However, once in the organism the peptides should cross a series of potential barriers that they should avoid in order not to be inactivated. The digestive enzymes, the absorption through the gastrointestinal tract and the sanguine proteases can produce the hydrolysis of them and to generate inactive fragments or with a higher activity that its sequence precursor. Therefore, it is difficult to establish a direct relationship among the biological activity in vitro and in vivo, due mainly to the peptides bioavailability after oral administration. This should be taken into account at the moment to transfer the results from the investigation to the food industry for the elaboration and commercialization of nutraceutical products.
Comparison of Chemical and Functional Properties of Stevia rebaudiana (Bertoni) Varieties Cultivated in Mexican Southeast  [PDF]
Maira Segura-Campos, Enrique Barbosa-Martín, ángel Matus-Basto, Diana Cabrera-Amaro, María Murguía-Olmedo, Yolanda Moguel-Ordo?ez, David Betancur-Ancona
American Journal of Plant Sciences (AJPS) , 2014, DOI: 10.4236/ajps.2014.53039
Abstract:

The leaf powders from two varieties of Stevia rebaudiana (Bertoni) cultivated in Yucatan, Mexico were analyzed for their proximate composition, dietary fiber composition and functional properties. The leaf powders were a good source of carbohydrates (64.06%-67.98%), protein (12.11%-15.05%), and crudefiber (5.92%-9.52%). Total dietary fiber content in the S. rebaudiana leaf powders were 28.61 (Morita II) and 29.12 (Criolla) g/100g sample, with most of this content represented by insoluble dietary fiber 87.79% (Morita II) and 70.02% (Criolla). Neutral detergent fiber (NDF), acid detergent fiber (ADF) and acid detergent lignin (ADL) were higher in Criolla (19.29%, 17.77%, 8.98%) than Morita II variety (18.11%, 14.16%, 2.28%). Hemicellulose and cellulose were higher in Morita II (3.96%, 11.78%) than criolla variety (1.51%, 8.79%). Functional properties of leaf powder from Morita II and Criolla were, water-holding capacity (2.87-4.07 g/g sample), oil-holding capacity (6.49-6.79 g/g sample), water-absorption capacity (3.41-3.44 g/g sample), water-adsorption capacity (0.25-

Chemical and Functional Properties of Chia Seed (Salvia hispanica L.) Gum
Maira Rubi Segura-Campos,Norma Ciau-Solís,Gabriel Rosado-Rubio,Luis Chel-Guerrero,David Betancur-Ancona
International Journal of Food Science , 2014, DOI: 10.1155/2014/241053
Abstract: Chia (Salvia hispanica L.) constitutes a potential alternative raw material and ingredient in food industry applications due to its dietary fiber content. Gum can be extracted from its dietary fiber fractions for use as an additive to control viscosity, stability, texture, and consistency in food systems. The gum extracted from chia seeds was characterized to determine their quality and potential as functional food additives. The extracted chia gum contained 26.2% fat and a portion was submitted to fat extraction, producing two fractions: gum with fat (FCG) and gum partly defatted (PDCG). Proximal composition and physicochemical characterization showed these fractions to be different ( ). The PDCG had higher protein, ash, and carbohydrates content than the FCG, in addition to higher water-holding (110.5?g water/g fiber) and water-binding capacities (0.84?g water/g fiber). The FCG had greater oil-holding capacity (25.7?g oil/g fiber) and water absorption capacity (44?g water/g fiber). In dispersion trials, the gums exhibited a non-Newtonian fluid behavior, specifically shear thinning or pseudoplastic type. PDCG had more viscosity than FCG. Chia seed is an excellent natural source of gum with good physicochemical and functional qualities, and is very promising for use in food industry. 1. Introduction The Chia (Salvia hispanica) seed was used as an offering to the Aztec gods, and, because of its religious use, it essentially disappeared for 500 years. This is an annual herbaceous plant belonging to the Lamiaceae or Labiatae family. In pre-Columbian times, it was one of the basic foods of several Central American civilizations, less important than corn and beans, but more important than amaranth [1]. Seeds are consumed in México, Argentina, and the southwestern United States. The chemical composition reports contents of protein (15–25%), fats (30–33%), carbohydrates (26–41%), dietary fiber (18–30%), and ash (4-5%). It also contains a high amount of vitamins, minerals, and antioxidants [2]. Chia seeds have been investigated and recommended due to their high levels of proteins, antioxidants, dietary fiber, vitamins, and minerals but particularly due to their oil content with the highest proportion of α-linolenic acid ( -3) compared to other natural sources known to date [3]. Chia seeds contain up to 39% of oil, which has the highest known content of α-linolenic acid, up to 68% [4]. Chia seed gum has the potential for industrial use because of its slimy properties, evident even at very low concentration, and because the plant, native to America, grows well in
Page 1 /10083
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.