oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2020 ( 128 )

2019 ( 695 )

2018 ( 809 )

2017 ( 795 )

Custom range...

Search Results: 1 - 10 of 455206 matches for " M. W. Shephard "
All listed articles are free for downloading (OA Articles)
Page 1 /455206
Display every page Item
Performance of the line-by-line radiative transfer model (LBLRTM) for temperature and species retrievals: IASI case studies from JAIVEx
M. W. Shephard,S. A. Clough,V. H. Payne,W. L. Smith
Atmospheric Chemistry and Physics Discussions , 2009,
Abstract: Presented here are comparisons between the Infrared Atmospheric Sounding instrument (IASI) and the "Line-By- Line Radiative Transfer Model" (LBLRTM). Spectral residuals from radiance closure studies during the IASI JAIVEx validation campaign provide insight into a number of spectroscopy issues relevant to remote sounding of temperature, water vapor and trace gases from IASI. In order to perform quality IASI trace gas retrievals the temperature and water vapor fields must be retrieved as accurately as possible. In general, the residuals in the CO2 ν2 region are of the order of the IASI instrument noise. However, outstanding issues in the CO2 spectral regions remain. There is a large residual ~ 1.5 K in the 667 cm 1 Q-branch, and residuals in the CO2 ν2 and N2O/CO2 ν3 spectral regions that sample the troposphere are inconsistent, with the N2O/CO2 ν3 region being too negative (warmer) by ~0.6 K. Residuals on this lower wavenumber side of the CO2 ν3 band will be improved by line parameter updates, while future efforts to reduce the residuals reaching ~ 0.5 K on the higher wavenumber side of the CO2 ν3 band will focus on addressing limitations in the modeling of the CO2 line shape (line coupling and duration of collision) effects. Brightness temperature residuals from the radiance closure studies in the ν2 water vapor band have standard deviations of ~0.2–0.3 K with some large peak residuals reaching ±0.5–1.0 K. These are larger than the instrument noise indicating that systematic errors still remain. New H2O line intensities and positions from Coudert have a significant impact on the retrieved water vapor, particularly in the upper troposphere where the water vapor retrievals are 10% drier when using line intensities from Coudert compared with HITRAN2004. In addition to O3, CH4, and CO, the high radiometric calibration of the IASI instrument combined with an accurate forward model allows for the detection of minor species with weak atmospheric signatures in the nadir radiances, such as HNO3 and OCS.
Methanol from TES global observations: retrieval algorithm and seasonal and spatial variability
K. E. Cady-Pereira,M. W. Shephard,D. B. Millet,M. Luo
Atmospheric Chemistry and Physics (ACP) & Discussions (ACPD) , 2012, DOI: 10.5194/acp-12-8189-2012
Abstract: We present a detailed description of the TES methanol (CH3OH) retrieval algorithm, along with initial global results showing the seasonal and spatial distribution of methanol in the lower troposphere. The full development of the TES methanol retrieval is described, including microwindow selection, error analysis, and the utilization of a priori and initial guess information provided by the GEOS-Chem chemical transport model. Retrieval simulations and a sensitivity analysis using the developed retrieval strategy show that TES: (i) generally provides less than 1.0 piece of information, (ii) is sensitive in the lower troposphere with peak sensitivity typically occurring between ~900–700 hPa (~1–3 km) at a vertical resolution of ~5 km, (iii) has a limit of detectability between 0.5 and 1.0 ppbv Representative Volume Mixing Ratio (RVMR) depending on the atmospheric conditions, corresponding roughly to a profile with a maximum concentration of at least 1 to 2 ppbv, and (iv) in a simulation environment has a mean bias of 0.16 ppbv with a standard deviation of 0.34 ppbv. Applying the newly derived TES retrieval globally and comparing the results with corresponding GEOS-Chem output, we find generally consistent large-scale patterns between the two. However, TES often reveals higher methanol concentrations than simulated in the Northern Hemisphere spring, summer and fall. In the Southern Hemisphere, the TES methanol observations indicate a model overestimate over the bulk of South America from December through July, and a model underestimate during the biomass burning season.
TES ammonia retrieval strategy and global observations of the spatial and seasonal variability of ammonia
M. W. Shephard,K. E. Cady-Pereira,M. Luo,D. K. Henze
Atmospheric Chemistry and Physics (ACP) & Discussions (ACPD) , 2011, DOI: 10.5194/acp-11-10743-2011
Abstract: Presently only limited sets of tropospheric ammonia (NH3) measurements in the Earth's atmosphere have been reported from satellite and surface station measurements, despite the well-documented negative impact of NH3 on the environment and human health. Presented here is a detailed description of the satellite retrieval strategy and analysis for the Tropospheric Emission Spectrometer (TES) using simulations and measurements. These results show that: (i) the level of detectability for a representative boundary layer TES NH3 mixing ratio value is ~0.4 ppbv, which typically corresponds to a profile that contains a maximum level value of ~1 ppbv; (ii) TES NH3 retrievals generally provide at most one degree of freedom for signal (DOFS), with peak sensitivity between 700 and 900 mbar; (iii) TES NH3 retrievals show significant spatial and seasonal variability of NH3 globally; (iv) initial comparisons of TES observations with GEOS-CHEM estimates show TES values being higher overall. Important differences and similarities between modeled and observed seasonal and spatial trends are noted, with discrepancies indicating areas where the timing and magnitude of modeled NH3 emissions from agricultural sources, and to lesser extent biomass burning sources, need further study.
Long-term stability of TES satellite radiance measurements
T. C. Connor,M. W. Shephard,V. H. Payne,K. E. Cady-Pereira
Atmospheric Measurement Techniques Discussions , 2011, DOI: 10.5194/amtd-4-1723-2011
Abstract: The utilization of Tropospheric Emission Spectrometer (TES) Level 2 (L2) retrieval products for the purpose of assessing long term changes in atmospheric trace gas composition requires knowledge of the overall radiometric stability of the Level 1B (L1B) radiances. The purpose of this study is to evaluate the stability of the radiometric calibration of the TES instrument by analyzing the difference between measured and calculated brightness temperatures in selected window regions of the spectrum. The Global Modeling and Assimilation Office (GMAO) profiles for temperature and water vapor and the Real-Time Global Sea Surface Temperature (RTGSST) are used as input to the Optimal Spectral Sampling (OSS) radiative transfer model to calculate the simulated spectra. The TES reference measurements selected cover a 4-year period of time from mid 2005 through mid 2009 with the selection criteria being; observation latitudes greater than 30° and less than 30°, over ocean, Global Survey mode (nadir view) and retrieved cloud optical depth of less than 0.01. The TES cloud optical depth retrievals are used only for screening purposes and no effects of clouds on the radiances are included in the forward model. This initial screening results in over 55 000 potential reference spectra spanning the four year period. Presented is a trend analysis of the time series of the residuals (observation minus calculations) in the TES 2B1, 1B2, 2A1, and 1A1 bands which demonstrates that the trend in the residuals is not significantly different from zero over the 4-year period. This is one method used to demonstrate that the relative radiometric calibration is stable over time, which is very important for any longer term analysis of TES retrieved products (L2) particularly well-mixed species such as carbon dioxide and methane.
Performance of the line-by-line radiative transfer model (LBLRTM) for temperature and species retrievals: IASI case studies from JAIVEx
M. W. Shephard, S. A. Clough, V. H. Payne, W. L. Smith, S. Kireev,K. E. Cady-Pereira
Atmospheric Chemistry and Physics (ACP) & Discussions (ACPD) , 2009,
Abstract: Presented here are comparisons between the Infrared Atmospheric Sounding instrument (IASI) and the "Line-By-Line Radiative Transfer Model" (LBLRTM). Spectral residuals from radiance closure studies during the IASI JAIVEx validation campaign provide insight into a number of spectroscopy issues relevant to remote sounding of temperature, water vapor and trace gases from IASI. In order to perform quality IASI trace gas retrievals, the temperature and water vapor fields must be retrieved as accurately as possible. In general, the residuals in the CO2 ν2 region are of the order of the IASI instrument noise. However, outstanding issues with the CO2 spectral regions remain. There is a large residual ~ 1.7 K in the 667 cm 1 Q-branch, and residuals in the CO2 ν2 and N2O/CO2 ν3 spectral regions that sample the troposphere are inconsistent, with the N2O/CO2 ν3 region being too negative (warmer) by ~0.7 K. Residuals on this lower wavenumber side of the CO2 ν3 band will be improved by line parameter updates, while future efforts to reduce the residuals reaching ~ 0.5 K on the higher wavenumber side of the CO2 ν3 band will focus on addressing limitations in the modeling of the CO2 line shape (line coupling and duration of collision) effects. Brightness temperature residuals from the radiance closure studies in the ν2 water vapor band have standard deviations of ~0.2–0.3 K with some large peak residuals reaching ±0.5–1.0 K. These are larger than the instrument noise indicating that systematic errors still remain. New H2O line intensities and positions have a significant \mbox{impact} on the retrieved water vapor, particularly in the upper troposphere where the water vapor retrievals are 10% drier when using line intensities compared with HITRAN 2004. In addition to O3, CH4, and CO, of the IASI instrument combined with an accurate forward model allows for the detection of minor species with weak atmospheric signatures in the nadir radiances, such as HNO3 and OCS.
Long-term stability of TES satellite radiance measurements
T. C. Connor, M. W. Shephard, V. H. Payne, K. E. Cady-Pereira, S. S. Kulawik, M. Luo, G. Osterman,M. Lampel
Atmospheric Measurement Techniques (AMT) & Discussions (AMTD) , 2011,
Abstract: The utilization of Tropospheric Emission Spectrometer (TES) Level 2 (L2) retrieval products for the purpose of assessing long term changes in atmospheric trace gas composition requires knowledge of the overall radiometric stability of the Level 1B (L1B) radiances. The purpose of this study is to evaluate the stability of the radiometric calibration of the TES instrument by analyzing the difference between measured and calculated brightness temperatures in selected window regions of the spectrum. The Global Modeling and Assimilation Office (GMAO) profiles for temperature and water vapor and the Real-Time Global Sea Surface Temperature (RTGSST) are used as input to the Optimal Spectral Sampling (OSS) radiative transfer model to calculate the simulated spectra. The TES reference measurements selected cover a 4-year period of time from mid 2005 through mid 2009 with the selection criteria being; observation latitudes greater than 30° and less than 30°, over ocean, Global Survey mode (nadir view) and retrieved cloud optical depth of less than or equal to 0.01. The TES cloud optical depth retrievals are used only for screening purposes and no effects of clouds on the radiances are included in the forward model. This initial screening results in over 55 000 potential reference spectra spanning the four year period. Presented is a trend analysis of the time series of the residuals (observation minus calculations) in the TES 2B1, 1B2, 2A1, and 1A1 bands, with the standard deviation of the residuals being approximately equal to 0.6 K for bands 2B1, 1B2, 2A1, and 0.9 K for band 1A1. The analysis demonstrates that the trend in the residuals is not significantly different from zero over the 4-year period. This is one method used to demonstrate that the relative radiometric calibration is stable over time, which is very important for any longer term analysis of TES retrieved products (L2), particularly well-mixed species such as carbon dioxide and methane.
TES ammonia retrieval strategy and global observations of the spatial and seasonal variability of ammonia
M. W. Shephard, K. E. Cady-Pereira, M. Luo, D. K. Henze, R. W. Pinder, J. T. Walker, C. P. Rinsland, , J. O. Bash, L. Zhu, V. H. Payne,L. Clarisse
Atmospheric Chemistry and Physics (ACP) & Discussions (ACPD) , 2011,
Abstract: Presently only limited sets of tropospheric ammonia (NH3) measurements in the Earth's atmosphere have been reported from satellite and surface station measurements, despite the well-documented negative impact of NH3 on the environment and human health. Presented here is a detailed description of the satellite retrieval strategy and analysis for the Tropospheric Emission Spectrometer (TES) using simulations and measurements. These results show that: (i) the level of detectability for a representative boundary layer TES NH3 mixing ratio value is ~0.4 ppbv, which typically corresponds to a profile that contains a maximum level value of ~1 ppbv; (ii) TES NH3 retrievals generally provide at most one degree of freedom for signal (DOFS), with peak sensitivity between 700 and 900 mbar; (iii) TES NH3 retrievals show significant spatial and seasonal variability of NH3 globally; (iv) initial comparisons of TES observations with GEOS-CHEM estimates show TES values being higher overall. Important differences and similarities between modeled and observed seasonal and spatial trends are noted, with discrepancies indicating areas where the timing and magnitude of modeled NH3 emissions from agricultural sources, and to lesser extent biomass burning sources, need further study.
Compound cryopump for fusion reactors
M. Kovari,R. Clarke,T. Shephard
Physics , 2013, DOI: 10.1016/j.fusengdes.2013.10.009
Abstract: We reconsider an old idea: a three-stage compound cryopump for use in fusion reactors such as DEMO. The helium "ash" is adsorbed on a 4.5 K charcoal-coated surface, while deuterium and tritium are adsorbed at 15-22 K on a second charcoal-coated surface. The helium is released by raising the first surface to ~30 K. In a separate regeneration step, deuterium and tritium are released at ~110 K. In this way, the helium can be pre-separated from other species. In the simplest design, all three stages are in the same vessel, with a single valve to close the pump off from the tokamak during regeneration. In an alternative design, the three stages are in separate vessels, connected by valves, allowing the stages to regenerate without interfering with each other. The inclusion of the intermediate stage would not affect the overall pumping speed significantly. The downstream exhaust processing system could be scaled down, as much of the deuterium and tritium could be returned directly to the reactor. This could reduce the required tritium reserve by almost 90%. We used a well-established free Direct Simulation Monte Carlo (DSMC) code, DS2V. At very high upstream densities (~1020 molecules/m3 and above) the flow into the pump is choked. Enlarging the aperture is the only way to increase the pumping speed at high densities. Ninety percent of the deuterium and tritium is successfully trapped at 15 K (assuming that the sticking coefficient is 80-100% on the 15-22 K surface). On the other hand, the remaining 10% still exceeds the small amount of helium in the gas input.
Tropospheric methanol observations from space: retrieval evaluation and constraints on the seasonality of biogenic emissions
K. C. Wells, D. B. Millet, L. Hu, K. E. Cady-Pereira, Y. Xiao, M. W. Shephard, C. L. Clerbaux, L. Clarisse, P.-F. Coheur, E. C. Apel, J. de Gouw, C. Warneke, H. B. Singh, A. H. Goldstein,B. C. Sive
Atmospheric Chemistry and Physics (ACP) & Discussions (ACPD) , 2012,
Abstract: Methanol retrievals from nadir-viewing space-based sensors offer powerful new information for quantifying methanol emissions on a global scale. Here we apply an ensemble of aircraft observations over North America to evaluate new methanol measurements from the Tropospheric Emission Spectrometer (TES) on the Aura satellite, and combine the TES data with observations from the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp-A satellite to investigate the seasonality of methanol emissions from northern midlatitude ecosystems. Using the GEOS-Chem chemical transport model as an intercomparison platform, we find that the TES retrieval performs well when the degrees of freedom for signal (DOFS) are above 0.5, in which case the model:TES regressions are generally consistent with the model:aircraft comparisons. Including retrievals with DOFS below 0.5 degrades the comparisons, as these are excessively influenced by the a priori. The comparisons suggest DOFS >0.5 as a minimum threshold for interpreting retrievals of trace gases with a weak tropospheric signal. We analyze one full year of satellite observations and find that GEOS-Chem, driven with MEGANv2.1 biogenic emissions, underestimates observed methanol concentrations throughout the midlatitudes in springtime, with the timing of the seasonal peak in model emissions 1–2 months too late. We attribute this discrepancy to an underestimate of emissions from new leaves in MEGAN, and apply the satellite data to better quantify the seasonal change in methanol emissions for midlatitude ecosystems. The derived parameters (relative emission factors of 11.0, 0.26, 0.12 and 3.0 for new, growing, mature, and old leaves, respectively, plus a leaf area index activity factor of 0.5 for expanding canopies with leaf area index <1.2) provide a more realistic simulation of seasonal methanol concentrations in midlatitudes on the basis of both the IASI and TES measurements.
A multicentre, randomised, double-blind, single-dose study assessing the efficacy of AMC/DCBA Warm lozenge or AMC/DCBA Cool lozenge in the relief of acute sore throat
Alan G Wade, Christopher Morris, Adrian Shephard, Gordon M Crawford, Michael A Goulder
BMC Family Practice , 2011, DOI: 10.1186/1471-2296-12-6
Abstract: In this multicentre, randomised, double-blind, single-dose study, 225 adult patients with acute sore throat were randomly assigned to receive either one AMC/DCBA Warm lozenge (n = 77), one AMC/DCBA Cool lozenge (n = 74) or one unflavoured, non-medicated lozenge (matched for size, shape and demulcency; n = 74). After baseline assessments, patients received their assigned lozenge and completed four rating assessments at 11 timepoints from 1 to 120 minutes post dose. Analgesic properties were assessed by comparing severity of throat soreness and sore throat relief ratings. Difficulty in swallowing, throat numbness, functional, sensorial and emotional benefits were also assessed.Both the AMC/DCBA Warm and AMC/DCBA Cool lozenge induced significant analgesic, functional, sensorial and emotional effects compared with the unflavoured, non-medicated lozenge. Sore throat relief, improvements in throat soreness and difficulty in swallowing, and throat numbness were observed as early as 1-5 minutes, and lasted up to 2 hours post dose. Sensorial benefits of warming and cooling associated with the AMC/DCBA Warm and AMC/DCBA Cool lozenge, respectively, were experienced soon after first dose, and in the case of the latter, it lasted long after the lozenge had dissolved. Emotional benefits of feeling better, happier, less distracted and less frustrated were reported in those taking either of the AMC/DCBA throat lozenge variants, with no differences in adverse events compared with the unflavoured, non-medicated lozenge.AMC/DCBA Warm and AMC/DCBA Cool lozenges are well-tolerated and effective OTC treatment options, offering functional, sensorial and emotional benefits to patients with acute sore throat, over and above that of the rapid efficacy effects provided.ISRCTN: ISRCTN00003567Acute sore throat is an inflammatory condition characterised by pain, redness, heat and swelling. Inflammatory mediators, such as bradykinin and prostaglandins, released following local responses to cell d
Page 1 /455206
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.