oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2019 ( 516 )

2018 ( 704 )

2017 ( 696 )

2016 ( 966 )

Custom range...

Search Results: 1 - 10 of 401174 matches for " M. Misiaszek "
All listed articles are free for downloading (OA Articles)
Page 1 /401174
Display every page Item
Decay of polarized muon at rest as a source of polarized neutrino beam
Ciechanowicz, S.;Sobkow, W.;Misiaszek, M.
High Energy Physics - Phenomenology , 2007,
Abstract: In this paper, we indicate the theoretical possibility of using the decay of polarized muons at rest as a source of the transversely polarized electron antineutrino beam. Such a beam can be used to probe new effects beyond standard model. We mean here new tests concerning CP violation, Lorentz structure and chirality structure of the charged current weak interactions. The main goal is to show how the energy and angular distribution of the electron antineutrinos in the muon rest frame depends on the transverse components of the antineutrino beam polarization. Our analysis is model-independent and consistent with the current upper limits on the non-standard couplings. The results are presented in a limit of infinitesimally small mass for all particles produced in the decay.
GPS-based CERN-LNGS time link for Borexino
B. Caccianiga,P. Cavalcante,G. Cerretto,H. Esteban,G. Korga,M. Misiaszek,M. Orsini,M. Pallavicini,V. Pettiti,C. Plantard,A. Razeto
Physics , 2012,
Abstract: We describe the design, the equipment, and the calibration of a new GPS based time link between CERN and the Borexino experiment at the Gran Sasso Laboratory in Italy. This system has been installed and operated in Borexino since March 2012, and used for a precise measurement of CNGS muon neutrinos speed in May 2012. The result of the measurement will be reported in a different letter.
Pulse shape discrimination for GERDA Phase I data
M. Agostini,M. Allardt,E. Andreotti,A. M. Bakalyarov,M. Balata,I. Barabanov,M. Barnabe Heider,N. Barros,L. Baudis,C. Bauer,N. Becerici-Schmidt,E. Bellotti,S. Belogurov,S. T. Belyaev,G. Benato,A. Bettini,L. Bezrukov,T. Bode,V. Brudanin,R. Brugnera,D. Budjá?,A. Caldwell,C. Cattadori,A. Chernogorov,F. Cossavella,E. V. Demidova,A. Domula,V. Egorov,R. Falkenstein,A. Ferella,K. Freund,N. Frodyma,A. Gangapshev,A. Garfagnini,C. Gotti,P. Grabmayr,V. Gurentsov,K. Gusev,K. K. Guthikonda,W. Hampel,A. Hegai,M. Heisel,S. Hemmer,G. Heusser,W. Hofmann,M. Hult,L. V. Inzhechik,L. Ioannucci,J. Janicskó Csáthy,J. Jochum,M. Junker,T. Kihm,I. V. Kirpichnikov,A. Kirsch,A. Klimenko,K. T. Kn?pfle,O. Kochetov,V. N. Kornoukhov,V. V. Kuzminov,M. Laubenstein,A. Lazzaro,V. I. Lebedev,B. Lehnert,H. Y. Liao,M. Lindner,I. Lippi,X. Liu,A. Lubashevskiy,B. Lubsandorzhiev,G. Lutter,C. Macolino,A. A. Machado,B. Majorovits,W. Maneschg,M. Misiaszek,I. Nemchenok,S. Nisi,C. O'Shaughnessy,L. Pandola,K. Pelczar,G. Pessina,A. Pullia,S. Riboldi,N. Rumyantseva,C. Sada,M. Salathe,C. Schmitt,J. Schreiner,O. Schulz,B. Schwingenheuer,S. Sch?nert,E. Shevchik,M. Shirchenko,H. Simgen,A. Smolnikov,L. Stanco,H. Strecker,M. Tarka,C. A. Ur,A. A. Vasenko,O. Volynets,K. von Sturm,V. Wagner,M. Walter,A. Wegmann,T. Wester,M. Wojcik,E. Yanovich,P. Zavarise,I. Zhitnikov,S. V. Zhukov,D. Zinatulina,K. Zuber,G. Zuzel
Physics , 2013, DOI: 10.1140/epjc/s10052-013-2583-7
Abstract: The GERDA experiment located at the LNGS searches for neutrinoless double beta (0\nu\beta\beta) decay of ^{76}Ge using germanium diodes as source and detector. In Phase I of the experiment eight semi-coaxial and five BEGe type detectors have been deployed. The latter type is used in this field of research for the first time. All detectors are made from material with enriched ^{76}Ge fraction. The experimental sensitivity can be improved by analyzing the pulse shape of the detector signals with the aim to reject background events. This paper documents the algorithms developed before the data of Phase I were unblinded. The double escape peak (DEP) and Compton edge events of 2.615 MeV \gamma\ rays from ^{208}Tl decays as well as 2\nu\beta\beta\ decays of ^{76}Ge are used as proxies for 0\nu\beta\beta\ decay. For BEGe detectors the chosen selection is based on a single pulse shape parameter. It accepts 0.92$\pm$0.02 of signal-like events while about 80% of the background events at Q_{\beta\beta}=2039 keV are rejected. For semi-coaxial detectors three analyses are developed. The one based on an artificial neural network is used for the search of 0\nu\beta\beta\ decay. It retains 90% of DEP events and rejects about half of the events around Q_{\beta\beta}. The 2\nu\beta\beta\ events have an efficiency of 0.85\pm0.02 and the one for 0\nu\beta\beta\ decays is estimated to be 0.90^{+0.05}_{-0.09}. A second analysis uses a likelihood approach trained on Compton edge events. The third approach uses two pulse shape parameters. The latter two methods confirm the classification of the neural network since about 90% of the data events rejected by the neural network are also removed by both of them. In general, the selection efficiency extracted from DEP events agrees well with those determined from Compton edge events or from 2\nu\beta\beta\ decays.
Results on neutrinoless double beta decay of 76Ge from GERDA Phase I
M. Agostini,M. Allardt,E. Andreotti,A. M. Bakalyarov,M. Balata,I. Barabanov,M. Barnabé Heider,N. Barros,L. Baudis,C. Bauer,N. Becerici-Schmidt,E. Bellotti,S. Belogurov,S. T. Belyaev,G. Benato,A. Bettini,L. Bezrukov,T. Bode,V. Brudanin,R. Brugnera,D. Budjá?,A. Caldwell,C. Cattadori,A. Chernogorov,F. Cossavella,E. V. Demidova,A. Domula,V. Egorov,R. Falkenstein,A. Ferella,K. Freund,N. Frodyma,A. Gangapshev,A. Garfagnini,C. Gotti,P. Grabmayr,V. Gurentsov,K. Gusev,K. K. Guthikonda,W. Hampel,A. Hegai,M. Heisel,S. Hemmer,G. Heusser,W. Hofmann,M. Hult,L. V. Inzhechik,L. Ioannucci,J. Janicskó Csáthy,J. Jochum,M. Junker,T. Kihm,I. V. Kirpichnikov,A. Kirsch,A. Klimenko,K. T. Kn?pfle,O. Kochetov,V. N. Kornoukhov,V. V. Kuzminov,M. Laubenstein,A. Lazzaro,V. I. Lebedev,B. Lehnert,H. Y. Liao,M. Lindner,I. Lippi,X. Liu,A. Lubashevskiy,B. Lubsandorzhiev,G. Lutter,C. Macolino,A. A. Machado,B. Majorovits,W. Maneschg,M. Misiaszek,I. Nemchenok,S. Nisi,C. O'Shaughnessy,L. Pandola,K. Pelczar,G. Pessina,%F. Potenza,A. Pullia,S. Riboldi,N. Rumyantseva,C. Sada,M. Salathe,C. Schmitt,J. Schreiner,O. Schulz,B. Schwingenheuer,S. Sch?nert,E. Shevchik,M. Shirchenko,H. Simgen,A. Smolnikov,L. Stanco,H. Strecker,M. Tarka,C. A. Ur,A. A. Vasenko,O. Volynets,K. von Sturm,V. Wagner,M. Walter,A. Wegmann,T. Wester,M. Wojcik,E. Yanovich,P. Zavarise,I. Zhitnikov,S. V. Zhukov,D. Zinatulina,K. Zuber,G. Zuzel
Physics , 2013, DOI: 10.1103/PhysRevLett.111.122503
Abstract: Neutrinoless double beta decay is a process that violates lepton number conservation. It is predicted to occur in extensions of the Standard Model of particle physics. This Letter reports the results from Phase I of the GERmanium Detector Array (GERDA) experiment at the Gran Sasso Laboratory (Italy) searching for neutrinoless double beta decay of the isotope 76Ge. Data considered in the present analysis have been collected between November 2011 and May 2013 with a total exposure of 21.6 kgyr. A blind analysis is performed. The background index is about 1.10^{-2} cts/(keV kg yr) after pulse shape discrimination. No signal is observed and a lower limit is derived for the half-life of neutrinoless double beta decay of 76Ge, T_1/2 > 2.1 10^{25} yr (90% C.L.). The combination with the results from the previous experiments with 76Ge yields T_1/2 > 3.0 10^{25} yr (90% C.L.).
Results on $ββ$ decay with emission of two neutrinos or Majorons in $^{76}$Ge from GERDA Phase I
M. Agostini,M. Allardt,A. M. Bakalyarov,M. Balata,I. Barabanov,N. Barros,L. Baudis,C. Bauer,N. Becerici-Schmidt,E. Bellotti,S. Belogurov,S. T. Belyaev,G. Benato,A. Bettini,L. Bezrukov,T. Bode,D. Borowicz,V. Brudanin,R. Brugnera,D. Budjá?,A. Caldwell,C. Cattadori,A. Chernogorov,V. D'Andrea,E. V. Demidova,A. di Vacri,A. Domula,E. Doroshkevich,V. Egorov,R. Falkenstein,O. Fedorova,K. Freund,N. Frodyma,A. Gangapshev,A. Garfagnini,P. Grabmayr,V. Gurentsov,K. Gusev,A. Hegai,M. Heisel,S. Hemmer,G. Heusser,W. Hofmann,M. Hult,L. V. Inzhechik,J. Janicskó Csáthy,J. Jochum,M. Junker,V. Kazalov,T. Kihm,I. V. Kirpichnikov,A. Kirsch,A. Klimenko,K. T. Kn?pfle,O. Kochetov,V. N. Kornoukhov,V. V. Kuzminov,M. Laubenstein,A. Lazzaro,V. I. Lebedev,B. Lehnert,H. Y. Liao,M. Lindner,I. Lippi,A. Lubashevskiy,B. Lubsandorzhiev,G. Lutter,C. Macolino,B. Majorovits,W. Maneschg,E. Medinaceli,M. Misiaszek,P. Moseev,I. Nemchenok,D. Palioselitis,K. Panas,L. Pandola,K. Pelczar,A. Pullia,S. Riboldi,N. Rumyantseva,C. Sada,M. Salathe,C. Schmitt,J. Schreiner,O. Schulz,B. Schwingenheuer,S. Sch?nert,O. Selivanenko,M. Shirchenko,H. Simgen,A. Smolnikov,L. Stanco,M. Stepaniuk,C. A. Ur,L. Vanhoefer,A. A. Vasenko,A. Veresnikova,K. von Sturm,V. Wagner,M. Walter,A. Wegmann,T. Wester,H. Wilsenach,M. Wojcik,E. Yanovich,P. Zavarise,I. Zhitnikov,S. V. Zhukov,D. Zinatulina,K. Zuber,G. Zuzel
Physics , 2015, DOI: 10.1140/epjc/s10052-015-3627-y
Abstract: A search for neutrinoless $\beta\beta$ decay processes accompanied with Majoron emission has been performed using data collected during Phase I of the GERmanium Detector Array (GERDA) experiment at the Laboratori Nazionali del Gran Sasso of INFN (Italy). Processes with spectral indices n = 1, 2, 3, 7 were searched for. No signals were found and lower limits of the order of 10$^{23}$ yr on their half-lives were derived, yielding substantially improved results compared to previous experiments with $^{76}$Ge. A new result for the half-life of the neutrino-accompanied $\beta\beta$ decay of $^{76}$Ge with significantly reduced uncertainties is also given, resulting in $T^{2\nu}_{1/2} = (1.926 \pm 0.095)\cdot10^{21}$ yr.
Improvement of the Energy Resolution via an Optimized Digital Signal Processing in GERDA Phase I
M. Agostini,M. Allardt,A. M. Bakalyarov,M. Balata,I. Barabanov,N. Barros,L. Baudis,C. Bauer,N. Becerici-Schmidt,E. Bellotti,S. Belogurov,S. T. Belyaev,G. Benato,A. Bettini,L. Bezrukov,T. Bode,D. Borowicz,V. Brudanin,R. Brugnera,D. Budjá?,A. Caldwell,C. Cattadori,A. Chernogorov,V. D'Andrea,E. V. Demidova,A. di Vacri,A. Domula,E. Doroshkevich,V. Egorov,R. Falkenstein,O. Fedorova,K. Freund,N. Frodyma,A. Gangapshev,A. Garfagnini,P. Grabmayr,V. Gurentsov,K. Gusev,A. Hegai,M. Heisel,S. Hemmer,G. Heusser,W. Hofmann,M. Hult,L. V. Inzhechik,J. Janicskó Csáthy,J. Jochum,M. Junker,V. Kazalov,T. Kihm,I. V. Kirpichnikov,A. Kirsch,A. Klimenko,K. T. Kn?pfle,O. Kochetov,V. N. Kornoukhov,V. V. Kuzminov,M. Laubenstein,A. Lazzaro,V. I. Lebedev,B. Lehnert,H. Y. Liao,M. Lindner,I. Lippi,A. Lubashevskiy,B. Lubsandorzhiev,G. Lutter,C. Macolino,B. Majorovits,W. Maneschg,E. Medinaceli,M. Misiaszek,P. Moseev,I. Nemchenok,D. Palioselitis,K. Panas,L. Pandola,K. Pelczar,A. Pullia,S. Riboldi,N. Rumyantseva,C. Sada,M. Salathe,C. Schmitt,B. Schneider,S. Sch?nert,J. Schreiner,A. -K. Schütz,O. Schulz,B. Schwingenheuer,O. Selivanenko,M. Shirchenko,H. Simgen,A. Smolnikov,L. Stanco,M. Stepaniuk,C. A. Ur,L. Vanhoefer,A. A. Vasenko,A. Veresnikova,K. von Sturm,V. Wagner,M. Walter,A. Wegmann,T. Wester,H. Wilsenach,M. Wojcik,E. Yanovich,P. Zavarise,I. Zhitnikov,S. V. Zhukov,D. Zinatulina,K. Zuber,G. Zuzel
Physics , 2015,
Abstract: An optimized digital shaping filter has been developed for the GERDA experiment which searches for neutrinoless double beta decay in 76Ge. The GERDA Phase I energy calibration data have been reprocessed and an average improvement of 0.3 keV in energy resolution (FWHM) at the 76Ge Q value for 0\nu\beta\beta decay is obtained. This is possible thanks to the enhanced low-frequency noise rejection of this Zero Area Cusp (ZAC) signal shaping fillter.
A test of electric charge conservation with Borexino
Borexino Collaboration,M. Agostini,S. Appel,G. Bellini,J. Benziger,D. Bick,G. Bonfini,D. Bravo,B. Caccianiga,F. Calaprice,A. Caminata,P. Cavalcante,A. Chepurnov,D. D'Angelo,S. Davini,A. Derbin,L. Di Noto,I. Drachnev,A. Empl,A. Etenko,K. Fomenko,D. Franco,F. Gabriele,C. Galbiati,C. Ghiano,M. Giammarchi,M. Goeger-Neff,A. Goretti,M. Gromov,C. Hagner,E. Hungerford,Aldo Ianni,Andrea Ianni,K. Jedrzejczak,M. Kaiser,V. Kobychev,D. Korablev,G. Korga,D. Kryn,M. Laubenstein,B. Lehnert,E. Litvinovich,F. Lombardi,P. Lombardi,L. Ludhova,G. Lukyanchenko,I. Machulin,S. Manecki,W. Maneschg,S. Marcocci,E. Meroni,M. Meyer,L. Miramonti,M. Misiaszek,M. Montuschi,P. Mosteiro,V. Muratova,B. Neumair,L. Oberauer,M. Obolensky,F. Ortica,K. Otis,M. Pallavicini,L. Papp,L. Perasso,A. Pocar,G. Ranucci,A. Razeto,A. Re,A. Romani,R. Roncin,N. Rossi,S. Schoenert,D. Semenov,H. Simgen,M. Skorokhvatov,O. Smirnov,A. Sotnikov,S. Sukhotin,Y. Suvorov,R. Tartaglia,G. Testera,J. Thurn,M. Toropova,E. Unzhakov,A. Vishneva,R. B. Vogelaar,F. von Feilitzsch,H. Wang,S. Weinz,J. Winter,M. Wojcik,M. Wurm,Z. Yokley,O. Zaimidoroga,S. Zavatarelli,K. Zuber,G. Zuzel
Physics , 2015, DOI: 10.1103/PhysRevLett.115.231802
Abstract: Borexino is a liquid scintillation detector located deep underground at the Laboratori Nazionali del Gran Sasso (LNGS, Italy). Thanks to the unmatched radio-purity of the scintillator, and to the well understood detector response at low energy, a new limit on the stability of the electron for decay into a neutrino and a single mono-energetic photon was obtained. This new bound, tau > 6.6 10**28 yr at 90 % C.L., is two orders of magnitude better than the previous limit.
Spectroscopy of geo-neutrinos from 2056 days of Borexino data
Borexino collaboration,M. Agostini,S. Appel,G. Bellini,J. Benziger,D. Bick,G. Bonfini,D. Bravo,B. Caccianiga,F. Calaprice,A. Caminata,P. Cavalcante,A. Chepurnov,K. Choi,D. DAngelo,S. Davini,A. Derbin,L. Di Noto,I. Drachnev,A. Empl,A. Etenko,G. Fiorentini,K. Fomenko,D. Franco,F. Gabriele,C. Galbiati,C. Ghiano,M. Giammarchi,M. Goger-Neff,A. Goretti,M. Gromov,C. Hagner,E. Hungerford,Aldo Ianni,Andrea Ianni,K. Jedrzejczak,M. Kaiser,V. Kobychev,D. Korablev,G. Korga,D. Kryn,M. Laubenstein,B. Lehnert,E. Litvinovich,F. Lombardi,P. Lombardi,L. Ludhova,G. Lukyanchenko,I. Machulin,S. Manecki,W. Maneschg,F. Mantovani,S. Marcocci,E. Meroni,M. Meyer,L. Miramonti,M. Misiaszek,M. Montuschi,P. Mosteiro,V. Muratova,L. Oberauer,M. Obolensky,F. Ortica,K. Otis,L. Pagani,M. Pallavicini,L. Papp,L. Perasso,S. Perasso,A. Pocar,G. Ranucci,A. Razeto,A. Re,B. Ricci,A. Romani,R. Roncin,N. Rossi,S. Schoenert,D. Semenov,H. Simgen,M. Skorokhavatov,O. Smirnov,A. Sotnikov,S. Sukhotin,Y. Suvorov,R. Tartaglia,G. Testera,J. Thurn,M. Toropova,E. Unzhakov,R. B. Vogelaar,F. von Feilitzsch,H. Wang,S. Weinz,J. Winter,M. Woicik,M. Wurm,Z. Yokley,O. Zaimidoroga,S. Zavatarelli,K. Zuber,G. Zuzel
Statistics , 2015, DOI: 10.1103/PhysRevD.92.031101
Abstract: We report an improved geo-neutrino measurement with Borexino from 2056 days of data taking. The present exposure is $(5.5\pm0.3)\times10^{31}$ proton$\times$yr. Assuming a chondritic Th/U mass ratio of 3.9, we obtain $23.7 ^{+6.5}_{-5.7} (stat) ^{+0.9}_{-0.6} (sys)$ geo-neutrino events. The null observation of geo-neutrinos with Borexino alone has a probability of $3.6 \times 10^{-9}$ (5.9$\sigma$). A geo-neutrino signal from the mantle is obtained at 98\% C.L. The radiogenic heat production for U and Th from the present best-fit result is restricted to the range 23-36 TW, taking into account the uncertainty on the distribution of heat producing elements inside the Earth.
Production, characterization and operation of $^{76}$Ge enriched BEGe detectors in GERDA
M. Agostini,M. Allardt,E. Andreotti,A. M. Bakalyarov,M. Balata,I. Barabanov,N. Barros,L. Baudis,C. Bauer,N. Becerici-Schmidt,E. Bellotti,S. Belogurov,S. T. Belyaev,G. Benato,A. Bettini,L. Bezrukov,T. Bode,D. Borowicz,V. Brudanin,R. Brugnera,D. Budjas,A. Caldwel,C. Cattadori,A. Chernogorov,V. D'Andrea,E. V. Demidova,A. Domula,V. Egorov,R. Falkenstein,K. Freund,N. Frodyma,A. Gangapshev,A. Garfagnini,C. Gotti,P. Grabmayr,V. Gurentsov,K. Gusev,W. Hampel,A. Hegai,M. Heisel,S. Hemmer,G. Heusser,W. Hofmann,M. Hult,L. V. Inzhechik,L. Ioannucci,J. Janicsko Csathy,J. Jochum,M. Junker,V. Kazalov,T. Kihm,I. V. Kirpichnikov,A. Kirsch,A. Klimenko,K. T. Kn?pfle,O. Kochetov,V. N. Kornoukhov,V. V. Kuzminov,M. Laubenstein,A. Lazzaro,V. I. Lebedev,B. Lehnert,H. Y. Liao,M. Lindner,I. Lippi,A. Lubashevskiy,B. Lubsandorzhiev,G. Lutter,C. Macolino,B. Majorovits,W. Maneschg,M. Misiaszek,I. Nemchenok,S. Nisi,C. O'Shaughnessy,D. Palioselitis,L. Pandola,K. Pelczar,G. Pessina,A. Pullia,S. Riboldi,N. Rumyantseva,C. Sada,M. Salathe,C. Schmitt,J. Schreiner,O. Schulz,B. Schwingenheuer,S. Sch?nert,E. Shevchik,M. Shirchenko,H. Simgen,A. Smolnikov,L. Stanco,H. Strecker,C. A. Ur,L. Vanhoefer,A. A. Vasenko,K. von Sturm,V. Wagner,M. Walter,A. Wegmann,T. Wester,H. Wilsenach,M. Wojcik,E. Yanovich,P. Zavarise,I. Zhitnikov,S. V. Zhukov,D. Zinatulina,K. Zuber,G. Zuzel
Physics , 2014, DOI: 10.1140/epjc/s10052-014-3253-0
Abstract: The GERmanium Detector Array (GERDA) at the Gran Sasso Underground Laboratory (LNGS) searches for the neutrinoless double beta decay (0{\nu}{\beta}{\beta}) of $^{76}$Ge. Germanium detectors made of material with an enriched $^{76}$Ge fraction act simultaneously as sources and detectors for this decay. During Phase I of the experiment mainly refurbished semi-coaxial Ge detectors from former experiments were used. For the upcoming Phase II, 30 new $^{76}$Ge enriched detectors of broad energy germanium (BEGe)-type were produced. A subgroup of these detectors has already been deployed in GERDA during Phase I. The present paper reviews the complete production chain of these BEGe detectors including isotopic enrichment, purification, crystal growth and diode production. The efforts in optimizing the mass yield and in minimizing the exposure of the $^{76}$Ge enriched germanium to cosmic radiation during processing are described. Furthermore, characterization measurements in vacuum cryostats of the first subgroup of seven BEGe detectors and their long-term behavior in liquid argon are discussed. The detector performance fulfills the requirements needed for the physics goals of GERDA Phase~II.
Measurement of neutrino flux from the primary proton--proton fusion process in the Sun with Borexino detector
O. Y. Smirnov,M. Agostini,S. Appel,G. Bellini,J. Benziger,D. Bick,G. Bonfini,D. Bravo,B. Caccianiga,F. Calaprice,A. Caminata,P. Cavalcante,A. Chepurnov,K. Choi,D. D'Angelo,S. Davini,A. Derbin,L. Di Noto,I. Drachnev,A. Empl,A. Etenko,K. Fomenko,D. Franco,F. Gabriele,C. Galbiati,C. Ghiano,M. Giammarchi,M. Goeger-Neff,A. Goretti,M. Gromov,C. Hagner,E. Hungerford,Aldo Ianni,Andrea Ianni,K. Jedrzejczak,M. Kaiser,V. Kobychev,D. Korablev,G. Korga,D. Kryn,M. Laubenstein,B. Lehnert,E. Litvinovich,F. Lombardi,P. Lombardi,L. Ludhova,G. Lukyanchenko,I. Machulin,S. Manecki,W. Maneschg,S. Marcocci,E. Meroni,M. Meyer,L. Miramonti,M. Misiaszek,P. Mosteiro,V. Muratova,B. Neumair,L. Oberauer,M. Obolensky,F. Ortica,K. Otis,L. Pagani,M. Pallavicini,L. Papp,L. Perasso,A. Pocar,G. Ranucci,A. Razeto,A. Re,A. Romani,R. Roncin,N. Rossi,S. Sch?nert,D. Semenov,H. Simgen,M. Skorokhvatov,A. Sotnikov,S. Sukhotin,Y. Suvorov,R. Tartaglia,G. Testera,J. Thurn,M. Toropova,E. Unzhakov,R. B. Vogelaar,F. von Feilitzsch,H. Wang,S. Weinz,J. Winter,M. Wojcik,M. Wurm,Z. Yokley,O. Zaimidoroga,S. Zavatarelli,K. Zuber,G. Zuzel
Physics , 2015,
Abstract: Neutrino produced in a chain of nuclear reactions in the Sun starting from the fusion of two protons, for the first time has been detected in a real-time detector in spectrometric mode. The unique properties of the Borexino detector provided an oppurtunity to disentangle pp-neutrino spectrum from the background components. A comparison of the total neutrino flux from the Sun with Solar luminosity in photons provides a test of the stability of the Sun on the 10$^{5}$ years time scale, and sets a strong limit on the power production in the unknown energy sources in the Sun of no more than 4\% of the total energy production at 90\% C.L.
Page 1 /401174
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.