Abstract:
How well do public relations practitioners place their dominant frames in media discourse?This research is an exploratory examination of this issue through a comparison of public relations and broadcast frames during a televised sport event. The research confirms that practitioners do influence media discourse; however, their influence is qualified predominately by receiver needs. This analysis found that dominant public relations frames do not automatically transfer to broadcast frames, and if transferred, public relations frames are often modified in the process. Based on these findings, a refined conceptualisation of power in frames is presented that suggests practitioners should develop frames from a receiver-based perspective in order to better guide and control a frame’s transfer into media discourse.

Abstract:
We present a generic study of unambiguous discrimination between two mixed quantum states. We derive operational optimality conditions and show that the optimal measurements can be classified according to their rank. In Hilbert space dimensions smaller or equal to five this leads to the complete optimal solution. We demonstrate our method with a physical example, namely the unambiguous comparison of n quantum states, and find the optimal success probability.

Abstract:
We investigate the unambiguous comparison of quantum states in a scenario that is more general than the one that was originally suggested by Barnett et al. First, we find the optimal solution for the comparison of two states taken from a set of two pure states with arbitrary a priori probabilities. We show that the optimal coherent measurement is always superior to the optimal incoherent measurement. Second, we develop a strategy for the comparison of two states from a set of N pure states, and find an optimal solution for some parameter range when N=3. In both cases we use the reduction method for the corresponding problem of mixed state discrimination, as introduced by Raynal et al., which reduces the problem to the discrimination of two pure states only for N=2. Finally, we provide a necessary and sufficient condition for unambiguous comparison of mixed states to be possible.

Abstract:
We analyze the optimal unambiguous discrimination of two arbitrary mixed quantum states. We show that the optimal measurement is unique and we present this optimal measurement for the case where the rank of the density operator of one of the states is at most 2 ("solution in 4 dimensions"). The solution is illustrated by some examples. The optimality conditions proved by Eldar et al. [Phys. Rev. A 69, 062318 (2004)] are simplified to an operational form. As an application we present optimality conditions for the measurement, when only one of the two states is detected. The current status of optimal unambiguous state discrimination is summarized via a general strategy.

Abstract:
Starting from a realistic One-Boson-Exchange model of the nucleon nucleon interaction the relativistic mean field for nucleons is determined within the Dirac Brueckner Hartree Fock approach for finite nuclei. The matrix elements of the axial charge operator evaluated for the solutions of the Dirac equation with this selfenergy are investigated. These matrix elements are enhanced with respect to the equivalent non relativistic ones obtained from the solutions of the Schr\"odinger equation with the non relativistic equivalent potential. The present results confirm at a qualitative level the results for the axial charge renormalization obtained with perturbative approaches. However, the results obtained differ in size from those of the perturbative approach and are nucleus and state dependent.

Abstract:
The momentum dependence of the mean-field contribution to the real part of the optical model potential is investigated employing realistic nucleon-nucleon interactions. Within a non-relativistic approach a momentum dependence originates from the non-locality of the Fock exchange term. Deducing the real part of the optical model from a relativistic Dirac Brueckner Hartree Fock approximation for the self-energy of the nucleons yields an additional momentum dependence originating from the non-relativistic reduction of the self-energy. It is demonstrated that large Fock terms are required in the non-relativistic approach to simulate these relativistic features. A comparison is made between a local density approximation for the optical model and a direct evaluation in finite nuclei.

Abstract:
We introduce the concept of a physical process that purifies a mixed quantum state, taken from a set of states, and investigate the conditions under which such a purification map exists. Here, a purification of a mixed quantum state is a pure state in a higher-dimensional Hilbert space, the reduced density matrix of which is identical to the original state. We characterize all sets of mixed quantum states, for which perfect purification is possible. Surprisingly, some sets of two non-commuting states are among them. Furthermore, we investigate the possibility of performing an imperfect purification.

Abstract:
We present a criterion, based on three commutator relations, that allows to decide whether two self-adjoint matrices with non-overlapping support are simultaneously unitarily similar to quasidiagonal matrices, i.e., whether they can be simultaneously brought into a diagonal structure with 2x2-dimensional blocks. Application of this criterion to unambiguous state discrimination provides a systematic test whether the given problem is reducible to a solvable structure. As an example, we discuss unambiguous state comparison.

Abstract:
We define a simple rule that allows to describe sequences of projective measurements for a broad class of generalized probabilistic models. This class embraces quantum mechanics and classical probability theory, but, for example, also the hypothetical Popescu-Rohrlich box. For quantum mechanics, the definition yields the established L\"uders's rule, which is the standard rule how to update the quantum state after a measurement. In the general case it can be seen as the least disturbing or most coherent way to perform sequential measurements. As example we show that Spekkens's toy model is an instance of our definition. We also demonstrate the possibility of strong post-quantum correlations as well as the existence of triple-slit correlations for certain non-quantum toy models.

Abstract:
It has been argued that applicants who have the ability to identify what kind of behavior is evaluated positively in a personnel selection situation can use this information to adapt their behavior accordingly. Although this idea has been tested for assessment centers and structured interviews, it has not been studied with regard to integrity tests (or other personality tests). Therefore, this study tested whether candidates’ ability to identify evaluation criteria (ATIC) correlates with their integrity test scores. Candidates were tested in an application training setting (N = 92). The results supported the idea that ATIC also plays an important role for integrity tests. New directions for future research are suggested based on this finding.