oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2018 ( 1 )

2017 ( 1 )

2015 ( 31 )

2014 ( 21 )

Custom range...

Search Results: 1 - 10 of 403 matches for " Lajos Hanzo "
All listed articles are free for downloading (OA Articles)
Page 1 /403
Display every page Item
Fifty Years of MIMO Detection: The Road to Large-Scale MIMOs
Shaoshi Yang,Lajos Hanzo
Mathematics , 2015, DOI: 10.1109/COMST.2015.2475242
Abstract: The emerging massive/large-scale MIMO (LS-MIMO) systems relying on very large antenna arrays have become a hot topic of wireless communications. Compared to the LTE based 4G mobile communication system that allows for up to 8 antenna elements at the base station (BS), the LS-MIMO system entails an unprecedented number of antennas, say 100 or more, at the BS. The huge leap in the number of BS antennas opens the door to a new research field in communication theory, propagation and electronics, where random matrix theory begins to play a dominant role. In this paper, we provide a recital on the historic heritages and novel challenges facing LS-MIMOs from a detection perspective. Firstly, we highlight the fundamentals of MIMO detection, including the nature of co-channel interference, the generality of the MIMO detection problem, the received signal models of both linear memoryless MIMO channels and dispersive MIMO channels exhibiting memory, as well as the complex-valued versus real-valued MIMO system models. Then, an extensive review of the representative MIMO detection methods conceived during the past 50 years (1965-2015) is presented, and relevant insights as well as lessons are inferred for designing complexity-scalable MIMO detection algorithms that are potentially applicable to LS-MIMO systems. Furthermore, we divide the LS-MIMO systems into two types, and elaborate on the distinct detection strategies suitable for each of them. The type-I LS-MIMO corresponds to the case where the number of active users is much smaller than the number of BS antennas, which is currently the mainstream definition of LS-MIMO. The type-II LS-MIMO corresponds to the case where the number of active users is comparable to the number of BS antennas. Finally, we discuss the applicability of existing MIMO detection algorithms in LS-MIMO systems, and review some of the recent advances in LS-MIMO detection.
Semi-blind adaptive beamforming for high-throughput quadrature amplitude modulation systems

Sheng Chen,Wang Yao,Lajos Hanzo,

国际自动化与计算杂志 , 2010,
Abstract: A semi-blind adaptive beamforming scheme is proposed for wireless systems that employ high-throughput quadrature amplitude modulation signalling. A minimum number of training symbols, equal to the number of receiver antenna array's elements, are first utilised to provide a rough initial least squares estimate of the beamformer's weight vector. A concurrent constant modulus algorithm and soft decision-directed scheme is then applied to adapt the beamformer. This semi-blind adaptive beamforming scheme is capable of converging fast to the minimum mean-square-error beamforming solution, as demonstrated in our simulation study.
Adaptive Space-Time-Spreading-Assisted Wideband CDMA Systems Communicating over Dispersive Nakagami- Fading Channels
Yang Lie-Liang,Hanzo Lajos
EURASIP Journal on Wireless Communications and Networking , 2005,
Abstract: In this contribution, the performance of wideband code-division multiple-access (W-CDMA) systems using space-time-spreading- (STS-) based transmit diversity is investigated, when frequency-selective Nakagami- fading channels, multiuser interference, and background noise are considered. The analysis and numerical results suggest that the achievable diversity order is the product of the frequency-selective diversity order and the transmit diversity order. Furthermore, both the transmit diversity and the frequency-selective diversity have the same order of importance. Since W-CDMA signals are subjected to frequency-selective fading, the number of resolvable paths at the receiver may vary over a wide range depending on the transmission environment encountered. It can be shown that, for wireless channels where the frequency selectivity is sufficiently high, transmit diversity may be not necessitated. Under this case, multiple transmission antennas can be leveraged into an increased bitrate. Therefore, an adaptive STS-based transmission scheme is then proposed for improving the throughput of W-CDMA systems. Our numerical results demonstrate that this adaptive STS-based transmission scheme is capable of significantly improving the effective throughput of W-CDMA systems. Specifically, the studied W-CDMA system's bitrate can be increased by a factor of three at the modest cost of requiring an extra 0.4 dB or 1.2 dB transmitted power in the context of the investigated urban or suburban areas, respectively.
Adaptive Space-Time-Spreading-Assisted Wideband CDMA Systems Communicating over Dispersive Nakagami-m Fading Channels
Yang Lie-Liang,Hanzo Lajos
EURASIP Journal on Wireless Communications and Networking , 2005,
Abstract: In this contribution, the performance of wideband code-division multiple-access (W-CDMA) systems using space-time-spreading- (STS-) based transmit diversity is investigated, when frequency-selective Nakagami-m fading channels, multiuser interference, and background noise are considered. The analysis and numerical results suggest that the achievable diversity order is the product of the frequency-selective diversity order and the transmit diversity order. Furthermore, both the transmit diversity and the frequency-selective diversity have the same order of importance. Since W-CDMA signals are subjected to frequency-selective fading, the number of resolvable paths at the receiver may vary over a wide range depending on the transmission environment encountered. It can be shown that, for wireless channels where the frequency selectivity is sufficiently high, transmit diversity may be not necessitated. Under this case, multiple transmission antennas can be leveraged into an increased bitrate. Therefore, an adaptive STS-based transmission scheme is then proposed for improving the throughput of W-CDMA systems. Our numerical results demonstrate that this adaptive STS-based transmission scheme is capable of significantly improving the effective throughput of W-CDMA systems. Specifically, the studied W-CDMA system's bitrate can be increased by a factor of three at the modest cost of requiring an extra 0.4 dB or 1.2 dB transmitted power in the context of the investigated urban or suburban areas, respectively.
Nonlinear Multiantenna Detection Methods
Chen Sheng,Hanzo Lajos,Wolfgang Andreas
EURASIP Journal on Advances in Signal Processing , 2004,
Abstract: A nonlinear detection technique designed for multiple-antenna assisted receivers employed in space-division multiple-access systems is investigated. We derive the optimal solution of the nonlinear spatial-processing assisted receiver for binary phase shift keying signalling, which we refer to as the Bayesian detector. It is shown that this optimal Bayesian receiver significantly outperforms the standard linear beamforming assisted receiver in terms of a reduced bit error rate, at the expense of an increased complexity, while the achievable system capacity is substantially enhanced with the advent of employing nonlinear detection. Specifically, when the spatial separation expressed in terms of the angle of arrival between the desired and interfering signals is below a certain threshold, a linear beamformer would fail to separate them, while a nonlinear detection assisted receiver is still capable of performing adequately. The adaptive implementation of the optimal Bayesian detector can be realized using a radial basis function network. Two techniques are presented for constructing block-data-based adaptive nonlinear multiple-antenna assisted receivers. One of them is based on the relevance vector machine invoked for classification, while the other on the orthogonal forward selection procedure combined with the Fisher ratio class-separability measure. A recursive sample-by-sample adaptation procedure is also proposed for training nonlinear detectors based on an amalgam of enhanced -means clustering techniques and the recursive least squares algorithm.
EXIT-Chart Aided Near-Capacity Quantum Turbo Code Design
Zunaira Babar,Soon Xin Ng,Lajos Hanzo
Mathematics , 2015, DOI: 10.1109/TVT.2014.2328638
Abstract: The design of Quantum Turbo Codes (QTCs) typically relies on the analysis of their distance spectra, followed by Monte-Carlo simulations. By contrast, in this paper we appropriately adapt the conventional non-binary EXtrinsic Information Transfer (EXIT) charts for quantum turbo codes by exploiting the intrinsic quantum-to-classical isomorphism. The EXIT chart analysis not only allows us to dispense with the time-consuming Monte-Carlo simulations, but also facilitates the design of near-capacity codes without resorting to the analysis of their distance spectra. We have demonstrated that our EXIT chart predictions are in line with the Monte-Carlo simulations results. We have also optimized the entanglement-assisted QTC using EXIT charts, which outperforms the existing distance spectra based QTCs. More explicitly, the performance of our optimized QTC is as close as 0.3 dB to the corresponding hashing bound.
An Approximate Coding-Rate Versus Minimum Distance Formula for Binary Codes
Yosef Akhtman,Robert G. Maunder,Lajos Hanzo
Mathematics , 2012,
Abstract: We devise an analytically simple as well as invertible approximate expression, which describes the relation between the minimum distance of a binary code and the corresponding maximum attainable code-rate. For example, for a rate-(1/4), length-256 binary code the best known bounds limit the attainable minimum distance to 65
A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends
Yulong Zou,Xianbin Wang,Lajos Hanzo
Computer Science , 2015,
Abstract: This paper is motivated to examine the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. Several physical-layer security techniques are reviewed and compared, including information-theoretic security, artificial noise aided security, security-oriented beamforming, diversity assisted security, and physical-layer key generation approaches. Additionally, since a jammer emitting radio signals can readily interfere with the legitimate wireless users, we introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.
Spectral and Energy Spectral Efficiency Optimization of Joint Transmit and Receive Beamforming Based Multi-Relay MIMO-OFDMA Cellular Networks
Kent Tsz Kan Cheung,Shaoshi Yang,Lajos Hanzo
Mathematics , 2014, DOI: 10.1109/TWC.2014.2348996
Abstract: We first conceive a novel transmission protocol for a multi-relay multiple-input--multiple-output orthogonal frequency-division multiple-access (MIMO-OFDMA) cellular network based on joint transmit and receive beamforming. We then address the associated network-wide spectral efficiency (SE) and energy spectral efficiency (ESE) optimization problems. More specifically, the network's MIMO channels are mathematically decomposed into several effective multiple-input--single-output (MISO) channels, which are essentially spatially multiplexed for transmission. Hence, these effective MISO channels are referred to as spatial multiplexing components (SMCs). For the sake of improving the SE/ESE performance attained, the SMCs are grouped using a pair of proposed grouping algorithms. The first is optimal in the sense that it exhaustively evaluates all the possible combinations of SMCs satisfying both the semi-orthogonality criterion and other relevant system constraints, whereas the second is a lower-complexity alternative. Corresponding to each of the two grouping algorithms, the pair of SE and ESE maximization problems are formulated, thus the optimal SMC groups and optimal power control variables can be obtained for each subcarrier block. These optimization problems are proven to be concave, and the dual decomposition approach is employed for obtaining their solutions. Relying on these optimization solutions, the impact of various system parameters on both the attainable SE and ESE is characterized. In particular, we demonstrate that under certain conditions the lower-complexity SMC grouping algorithm achieves 90% of the SE/ESE attained by the exhaustive-search based optimal grouping algorithm, while imposing as little as 3.5% of the latter scheme's computational complexity.
Joint Relay and Jammer Selection Improves the Physical Layer Security in the Face of CSI Feedback Delays
Lei Wang,Yueming Cai,Yulong Zou,Weiwei Yang,Lajos Hanzo
Mathematics , 2015,
Abstract: We enhance the physical-layer security (PLS) of amplify-and-forward relaying networks with the aid of joint relay and jammer selection (JRJS), despite the deliterious effect of channel state information (CSI) feedback delays. Furthermore, we conceive a new outage-based characterization approach for the JRJS scheme. The traditional best relay selection (TBRS) is also considered as a benchmark. We first derive closed-form expressions of both the connection outage probability (COP) and of the secrecy outage probability (SOP) for both the TBRS and JRJS schemes. Then, a reliable-and-secure connection probability (RSCP) is defined and analyzed for characterizing the effect of the correlation between the COP and SOP introduced by the corporate source-relay link. The reliability-security ratio (RSR) is introduced for characterizing the relationship between the reliability and security through the asymptotic analysis. Moreover, the concept of effective secrecy throughput is defined as the product of the secrecy rate and of the RSCP for the sake of characterizing the overall efficiency of the system, as determined by the transmit SNR, secrecy codeword rate and the power sharing ratio between the relay and jammer. The impact of the direct source-eavesdropper link and additional performance comparisons with respect to other related selection schemes are further included. Our numerical results show that the JRJS scheme outperforms the TBRS method both in terms of the RSCP as well as in terms of its effective secrecy throughput, but it is more sensitive to the feedback delays. Increasing the transmit SNR will not always improve the overall throughput. Moreover, the RSR results demonstrate that upon reducing the CSI feedback delays, the reliability improves more substantially than the security degrades, implying an overall improvement in terms of the security-reliability tradeoff.
Page 1 /403
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.