oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2019 ( 141 )

2018 ( 320 )

2017 ( 295 )

2016 ( 454 )

Custom range...

Search Results: 1 - 10 of 297417 matches for " Kubata J. "
All listed articles are free for downloading (OA Articles)
Page 1 /297417
Display every page Item
Experimental and Numerical Research of a Novel Combustion Chamber for Small Gas Turbine Engines
Tuma J.,Kubata J.,Betak V.,Hybl R.
EPJ Web of Conferences , 2013, DOI: 10.1051/epjconf/20134501091
Abstract: New combustion chamber concept (based on burner JETIS-JET Induced Swirl) for small gas turbine engine (up to 200kW) is presented in this article. The combustion chamber concept is based on the flame stabilization by the generated swirl swirl generated by two opposite tangentially arranged jet tubes in the intermediate zone, this arrangement replaces air swirler, which is very complicated and expensive part in the scope of small gas turbines with annular combustion chamber. The mixing primary jets are oriented partially opposite to the main exhaust gasses flow, this enhances hot product recirculation and fuel-air mixing necessary for low NOx production and flame stability. To evaluate the designed concept a JETIS burner demonstrator (methane fuel) was manufactured and atmospheric experimental measurements of CO, NOx for various fuel nozzles and jet tubes the configuration were done. Results of these experiments and comparison with CFD simulation are presented here. Practical application of the new chamber concept in small gas turbine liquid fuel combustor was evaluated (verified) on 3 nozzles planar combustor sector test rig at atmospheric conditions results of the experiment and numerical simulation are also presented.
ALGORITHM OF WORK OF SYSTEM OF MANAGEMENT BY AUTOMATED GEAR-BOXES CARS
O.?Smirnov,G.?Kalyanov,V.?Kubata
Аvtomob?lnyi Transport , 2009,
Abstract: The development of algorithms of management system’s work by the automated gear-boxes vehicles is considered and the results of their practical use on the example of the KamAZ truck are considered.
Cyclical Appearance of African Trypanosomes in the Cerebrospinal Fluid: New Insights in How Trypanosomes Enter the CNS
Stefan Mogk, Andreas Meiwes, Swetlana Shtopel, Ulrich Schraermeyer, Michael Lazarus, Bruno Kubata, Hartwig Wolburg, Michael Duszenko
PLOS ONE , 2014, DOI: 10.1371/journal.pone.0091372
Abstract: It is textbook knowledge that human infective forms of Trypanosoma brucei, the causative agent of sleeping sickness, enter the brain across the blood-brain barrier after an initial phase of weeks (rhodesiense) or months (gambiense) in blood. Based on our results using an animal model, both statements seem questionable. As we and others have shown, the first infection relevant crossing of the blood brain border occurs via the choroid plexus, i.e. via the blood-CSF barrier. In addition, counting trypanosomes in blood-free CSF obtained by an atlanto-occipital access revealed a cyclical infection in CSF that was directly correlated to the trypanosome density in blood infection. We also obtained conclusive evidence of organ infiltration, since parasites were detected in tissues outside the blood vessels in heart, spleen, liver, eye, testis, epididymis, and especially between the cell layers of the pia mater including the Virchow-Robin space. Interestingly, in all organs except pia mater, heart and testis, trypanosomes showed either a more or less degraded appearance of cell integrity by loss of the surface coat (VSG), loss of the microtubular cytoskeleton and loss of the intracellular content, or where taken up by phagocytes and degraded intracellularly within lysosomes. This is also true for trypanosomes placed intrathecally into the brain parenchyma using a stereotactic device. We propose a different model of brain infection that is in accordance with our observations and with well-established facts about the development of sleeping sickness.
Late Stage Infection in Sleeping Sickness
Hartwig Wolburg, Stefan Mogk, Sven Acker, Claudia Frey, Monika Meinert, Caroline Sch?nfeld, Michael Lazarus, Yoshihiro Urade, Bruno Kilunga Kubata, Michael Duszenko
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0034304
Abstract: At the turn of the 19th century, trypanosomes were identified as the causative agent of sleeping sickness and their presence within the cerebrospinal fluid of late stage sleeping sickness patients was described. However, no definitive proof of how the parasites reach the brain has been presented so far. Analyzing electron micrographs prepared from rodent brains more than 20 days after infection, we present here conclusive evidence that the parasites first enter the brain via the choroid plexus from where they penetrate the epithelial cell layer to reach the ventricular system. Adversely, no trypanosomes were observed within the parenchyma outside blood vessels. We also show that brain infection depends on the formation of long slender trypanosomes and that the cerebrospinal fluid as well as the stroma of the choroid plexus is a hostile environment for the survival of trypanosomes, which enter the pial space including the Virchow-Robin space via the subarachnoid space to escape degradation. Our data suggest that trypanosomes do not intend to colonize the brain but reside near or within the glia limitans, from where they can re-populate blood vessels and disrupt the sleep wake cycles.
New components of the mercury’s perihelion precession  [PDF]
J. J. Smulsky
Natural Science (NS) , 2011, DOI: 10.4236/ns.2011.34034
Abstract: The velocity of perihelion rotation of Mercury's orbit relatively motionless space is computed. It is prove that it coincides with that calculated by the Newtonian interaction of the planets and of the compound model of the Sun’s rotation.
Simple General Purpose Ion Beam Deceleration System Using a Single Electrode Lens  [PDF]
J. Lopes, J. Rocha
World Journal of Engineering and Technology (WJET) , 2015, DOI: 10.4236/wjet.2015.33014
Abstract: Ion beam deceleration properties of a newly developed low-energy ion beam implantation system were studied. The objective of this system was to produce general purpose low-energy (5 to 15 keV) implantations with high current beam of hundreds of μA level, providing the most wide implantation area possible and allowing continuously magnetic scanning of the beam over the sample(s). This paper describes the developed system installed in the high-current ion implanter at the Laboratory of Accelerators and Radiation Technologies of the Nuclear and Technological Cam-pus, Sacavém, Portugal (CTN).
Constraints on velocity anisotropy of spherical systems with separable augmented densities
J. An
Physics , 2011, DOI: 10.1088/0004-637X/736/2/151
Abstract: If the augmented density of a spherical anisotropic system is assumed to be multiplicatively separable to functions of the potential and the radius, the radial function, which can be completely specified by the behavior of the anisotropy parameter alone, also fixes the anisotropic ratios of every higher-order velocity moment. It is inferred from this that the non-negativity of the distribution function necessarily limits the allowed behaviors of the radial function. This restriction is translated into the constraints on the behavior of the anisotropy parameter. We find that not all radial variations of the anisotropy parameter satisfy these constraints and thus that there exist anisotropy profiles that cannot be consistent with any separable augmented density.
On the augmented density of a spherical anisotropic dynamic system
J. An
Physics , 2010, DOI: 10.1111/j.1365-2966.2011.18324.x
Abstract: This paper presents a set of new conditions on the augmented density of a spherical anisotropic system that is necessary for the underlying two-integral phase-space distribution function to be non-negative. In particular, it is shown that the partial derivatives of the Abel transformations of the augmented density must be non-negative. Applied for the separable augmented densities, this recovers the result of van Hese et al. (2011).
Fractional calculus, completely monotonic functions, a generalized Mittag-Leffler function and phase-space consistency of separable augmented densities
J. An
Physics , 2012,
Abstract: Under the separability assumption on the augmented density, a distribution function can be always constructed for a spherical population with the specified density and anisotropy profile. Then, a question arises, under what conditions the distribution constructed as such is non-negative everywhere in the entire accessible subvolume of the phase-space. We rediscover necessary conditions on the augmented density expressed with fractional calculus. The condition on the radius part R(r^2) -- whose logarithmic derivative is the anisotropy parameter -- is equivalent to R(1/w)/w being a completely monotonic function whereas the condition on the potential part is stated as its derivative up to the order not greater than 3/2-b being non-negative (where b is the central limiting value for the anisotropy parameter). We also derive the set of sufficient conditions on the separable augmented density for the non-negativity of the distribution, which generalizes the condition derived for the generalized Cuddeford system by Ciotti & Morganti to arbitrary separable systems. This is applied for the case when the anisotropy is parameterized by a monotonic function of the radius of Baes & Van Hese. The resulting criteria are found based on the complete monotonicity of generalized Mittag-Leffler functions.
When is an axisymmetric potential separable?
J. An
Physics , 2013, DOI: 10.1093/mnras/stt1498
Abstract: An axially symmetric potential psi(R,z)=psi(r,theta) is completely separable if the ratio s:k is constant. Here r*s=d^2(r^2*psi)/dr/d(theta) and k=d^2(psi)/dR/dz. If beta=s/k, then the potential admits an integral of the form of I=(L^2+beta*v_z^2)/2+xi where xi is some function of positions determined by the potential psi. More generally, an axially symmetric potential respects the third axisymmetric integral of motion -- in addition to the classical integrals of the Hamiltonian and the axial component of the angular momentum -- if there exist three real constants a,b,c (not all simultaneously zero, a^2+b^2+c^2>0) such that a*s+b*h+c*k=0 where r*h=d^2(r*psi)/d(sigma)/d(tau) and (sigma,tau) is the parabolic coordinate in the meridional plane such that sigma^2=r+z and tau^2=r-z.
Page 1 /297417
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.