显示搜索
我的图书馆
OALib Journal期刊
ISSN: 2333-9721
费用:99美元
投稿
时间不限
2019 ( 12 )
2018 ( 121 )
2017 ( 108 )
2016 ( 247 )
自定义范围…
Measurement of the nutrient concentrations in the stream is usually done on weekly, biweekly or monthly basis due to limited resources. There is need to estimate concentration and loads during the period when no data is available. The objectives of this study were to test the performance of a suite of regression models in predicting continuous water quality loading data and to determine systematic biases in the prediction. This study used the LOADEST model which includes several predefined regression models that specify the model form and complexity. Water quality data primarily nitrogen and phosphorus from five monitoring stations in the Neuse River Basin in North Carolina, USA were used in the development and analyses of rating curves. We found that LOADEST performed generally well in predicting loads and observation trends with general tendency/bias towards overestimation. Estimated Total Nitrogen (TN) varied from observation (“true” load) by -1% to 9%, but for the Total Phosphorus (TP) it ranged from -2% to 27%. Statistical evaluation using R2, Nash-Sutcliff Efficiency (NSE) and Partial Load Factor (PLF) showed a strong correlation in prediction.
This paper presents the operation of a Multi-agent system (MAS) for the control of a smart grid. The proposed Multi-agent system consists of seven types of agents: Single Smart Grid Controller (SGC), Load Agents (LAGs), a Wind Turbine Agent (WTAG), Photo-Voltaic Agents (PVAGs), a Micro-Hydro Turbine Agent (MHTAG), Diesel Agents (DGAGs) and a Battery Agent (BAG). In a smart grid LAGs act as consumers or buyers, WTAG, PVAGs, MHTAG & DGAGs acts as producers or sellers and BAG act as producer/consumer or seller/buyer. The paper demonstrates the use of a Multi-agent system to control the smart grid in a simulated environment. In order to validate the performance of the proposed system, it has been applied to a simple model system with different time zone i.e. day time and night time and when power is available from the grid and when there is power shedding. Simulation results show that the proposed Multi-agent system can perform the operation of the smart grid efficiently.