oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Search Results: 1 - 10 of 2164 matches for " Kanak Lata Verma "
All listed articles are free for downloading (OA Articles)
Page 1 /2164
Display every page Item
HPTLC-MS as a Neoteric Hyphenated Technique for Separation and Forensic Identification of Drugs  [PDF]
Kanak Lata Verma, Manoj Kumar, Amar Pal Singh
Journal of Analytical Sciences, Methods and Instrumentation (JASMI) , 2018, DOI: 10.4236/jasmi.2018.81001
Abstract: Drugs are traditionally been identified on basis of chromatographic-spectroscopic hyphenated techniques in instrumental analysis. Gas chromatography (GC) and Liquid chromatography (LC) hyphenated with mass spectroscopy (MS) i.e. GC-MS and LC-MS give reliable and confirmatory results in drugs identification. In the present work the novel hyphenated technique High Performance Thin Layer Chromatography-Mass Spectroscopy (HPTLC-MS) has been used. This technique provides efficient, quick and simple method for identification and separation of Narcotic drugs and psychotropic substances. The drugs under study are Papaverine, Methadone, Cocaine, Ketamine, Caffeine, Codeine, Diazepam, Thebaine, Heroin, Methamphetamine, Carbamazepine, Morphine, Narcotine and Ephedrine. The present study comprising of sixteen drugs has been carried out on CAMAG HPTLC instrument with automatic sampling. Thin layer chromatography (TLC) plates were developed in various solvent systems, scanned under TLC scanner and the results in terms of Retention Factor (Rf value) and UV spectrum (λmax) are presented in the manuscript. Using hyphenated technique of HPTLC-MS (MS 2020 SHIMADZU) spots of these drugs from TLC plate was lifted with CAMAG TLC-MS interface and confirmed by the mass spectrum of the individual drugs by their m/z values thus delivering fast and accurate confirmatory result on the TLC plate.
Role of Active Principles of Podophyllum hexandrum in Amelioration of Radiation Mediated Lung Injuries by Reactive Oxygen/Nitrogen Species Reduction  [PDF]
Rashmi Saini, Savita Verma, Abhinav Singh, Manju Lata Gupta
CellBio (CellBio) , 2013, DOI: 10.4236/cellbio.2013.23012
Abstract: Radiation induced reactive oxygen/nitrogen species (ROS/RNS) are reported to cause lung injuries such as pneumonitis and fibrosis which may be fatal at times. Current study is designed to analyse the radioprotective efficacy of P. hexandrum active principles (G-002M) on lungs of mice exposed to high dose of gamma irradiation (7 Gy). Cellular profiles and inflammatory cell infiltrates of irradiated bronchoalveolar lavage fluid (BALF) have shown correlations with lung pathology. Cell counts were determined in BALF of control, 7 Gy radiation exposed and radiation with G-002M pretreated mice. ROS/Nitric Oxide (NO) production was measured by 2,7 dichlorodihydrofluorescein diacetate (DCF-DA) and diaminofluorescein diacetate (DAF-2DA) through microscopy and flow cytometry respectively. Immunostaining of inducible nitric oxide synthase (iNOS) in BALF cells and lung sections was also observed microscopically. iNOS ex- pression was observed in lungs by western blotting. BALF was also processed to estimate total protein, LDH, and phospholipids content. Catalase, reduced Glutathione (GSH), Glutathione reductase (GR) and lipid peroxidation were estimated in lung tissues. Pre-administration of G-002M significantly decreased radiation mediated neutrophils count in BALF of irradiated mice. ROS generation, iNOS expression, total protein, LDH and phospholipids were found less affected in G-002M pretreated group in comparison to radiation alone group. Radiation exposure to mice was found apparently leading to parenchymal fibrosis, an architectural distortion of the lung tissue with edema, infiltration of inflammatory blood cells with increased immunolabeling of iNOS. G-002M pretreatment significantly countered radiation mediated increased lipid peroxidation and decreased GR, catalase and GSH in mice. Current study demonstrates possible role of P. hexandrum (G-002M) in minimizing lung damage induced by radiation mediated ROS/RNS generation.
Modulation of Ionizing Radiation Induced Oxidative Imbalance by Semi-Fractionated Extract of Piper betle: An In Vitro and In Vivo Assessment
Savita Verma,Manju Lata Gupta,Ajaswrata Dutta,Sanghmitra Sankhwar,Sandeep Kumar Shukla,Swaran J. S. Flora
Oxidative Medicine and Cellular Longevity , 2010, DOI: 10.4161/oxim.3.1.10349
Abstract: The study was planned to evaluate modulatory effect of aqueous extract of Piper betle leaf (PBL) on ionizing radiation mediated oxidative stress leading to normal tissues damage during radiotherapy and other radiation exposures. The total polyphenols and flavonoids known as free radical scavenger (chelators) were measured in the extract. To ascertain antioxidant potential of PBL extract, we studied free radical scavenging, metal chelation, reducing power, lipid peroxidation inhibition and ferric reducing antioxidant properties (FRAP ) using in vitro assays. Mice were exposed to varied radiation doses administered with the same extract prior to irradiation to confirm its oxidative stress minimizing efficacy by evaluating ferric reducing ability of plasma, reduced glutathione, lipid peroxidation and micro-nuclei frequency. PBL extract was effective in scavenging DPPH (up to 92% at 100 µg/ml) and superoxide radicals (up to 95% at 80 µg/ml), chelated metal ions (up to 83% at 50 µg/ml) and inhibited lipid peroxidation (up to 45.65% at 500 µg/ml) in a dose dependant manner using in vitro model. Oral administration of PBL extract (225 mg/kg body weight) 1 hr before irradiation in mice significantly enhanced (p < 0.01) radiation abated antioxidant potential of plasma and GSH level in all the observed organs. The treatment with extract effectively lowered the radiation induced lipid peroxidation at 24 hrs in all the selected organs with maximum inhibition in thymus (p < 0.01). After 48 hrs, lipid peroxidation was maximally inhibited in the group treated with the extract. Frequency of radiation induced micronucleated cells declined significantly (34.78%, p < 0.01) at 24 hrs post-irradiation interval by PBL extract administration. The results suggest that PBL extract has high antioxidant potential and relatively non-toxic and thus could be assertively used to mitigate radiotherapy inflicted normal tissues damage and also injuries caused by moderate doses of radiation during unplanned exposures.
Modulation of Ionizing Radiation Induced Oxidative Imbalance by Semi-Fractionated Extract of Piper betle: An In Vitro and In Vivo Assessment
Savita Verma,Manju Lata Gupta,Ajaswrata Dutta,Sanghmitra Sankhwar,Sandeep Kumar Shukla,Swaran J. S. Flora
Oxidative Medicine and Cellular Longevity , 2010, DOI: 10.4161/oxim.3.1.10349
Abstract: The study was planned to evaluate modulatory effect of aqueous extract of Piper betle leaf (PBL) on ionizing radiation mediated oxidative stress leading to normal tissues damage during radiotherapy and other radiation exposures. The total polyphenols and flavonoids known as free radical scavenger (chelators) were measured in the extract. To ascertain antioxidant potential of PBL extract, we studied free radical scavenging, metal chelation, reducing power, lipid peroxidation inhibition and ferric reducing antioxidant properties (FRAP ) using in vitro assays. Mice were exposed to varied radiation doses administered with the same extract prior to irradiation to confirm its oxidative stress minimizing efficacy by evaluating ferric reducing ability of plasma, reduced glutathione, lipid peroxidation and micro-nuclei frequency. PBL extract was effective in scavenging DPPH (up to 92% at 100 μg/ml) and superoxide radicals (up to 95% at 80 μg/ml), chelated metal ions (up to 83% at 50 μg/ml) and inhibited lipid peroxidation (up to 45.65% at 500 μg/ml) in a dose dependant manner using in vitro model. Oral administration of PBL extract (225 mg/kg body weight) 1 hr before irradiation in mice significantly enhanced (p < 0.01) radiation abated antioxidant potential of plasma and GSH level in all the observed organs. The treatment with extract effectively lowered the radiation induced lipid peroxidation at 24 hrs in all the selected organs with maximum inhibition in thymus (p < 0.01). After 48 hrs, lipid peroxidation was maximally inhibited in the group treated with the extract. Frequency of radiation induced micronucleated cells declined significantly (34.78%, p < 0.01) at 24 hrs post-irradiation interval by PBL extract administration. The results suggest that PBL extract has high antioxidant potential and relatively non-toxic and thus could be assertively used to mitigate radiotherapy inflicted normal tissues damage and also injuries caused by moderate doses of radiation during unplanned exposures.
Disc heating: possible link between weak bars and superthin galaxies
Kanak Saha
Physics , 2014,
Abstract: The extreme flatness of stellar discs in superthin galaxies is puzzling and the apparent dearth of these objects in cosmological simulation poses challenging problem to the standard cold dark matter paradigm. Irrespective of mergers or accretion that a galaxy might be going through, stars are heated as they get older while they interact with the spirals and bars which are ubiquitous in disc galaxies -- leading to a puffed up stellar disc. It remains unclear how superthin galaxies maintain their thinness through the cosmic evolution. We follow the internal evolution of a sample of 16 initially extremely thin stellar discs using collisionless N-body simulation. All of these discs eventually form a bar in their central region. Depending on the initial condition, some of these stellar discs readily form strong bars while others grow weak bars over secular evolution time scale. We show that galaxies with strong bars heat the stars very efficiently, eventually making their stellar discs thicker. On the other hand, stars are heated very slowly by weak bars -- as a result, galaxies hosting weak bars are able to maintain their thinness over several billion years, if left isolated. We suggest that some of the superthin galaxies might as well be forming weak bars and thereby prevent any strong vertical heating which in turn helps maintaining their thinness during the course of secular evolution.
Lost in secular evolution: the case of a low mass classical bulge
Kanak Saha
Physics , 2015,
Abstract: The existence of a classical bulge in disk galaxies holds important clue to the assembly history of galaxies. Finding observational evidence of very low mass classical bulges particularly in barred galaxies including our Milky Way, is a challenging task as the bar driven secular evolution might bring significant dynamical change to these bulges alongside the stellar disk. Using high-resolution N-body simulation, we show that if a cool stellar disk is assembled around a non-rotating low-mass classical bulge, the disk rapidly grows a strong bar within a few rotation time scales. Later, the bar driven secular process transform the initial classical bulge into a flattened rotating stellar system whose central part also have grown a bar-like component rotating in sync with the disk bar. During this time, a boxy/peanut (hereafter, B/P) bulge is formed via the buckling instability of the disk bar and the vertical extent of this B/P bulge being slightly higher than that of the classical bulge, it encompasses the whole classical bulge. The resulting composite bulge appears to be both photometrically and kinematically identical to a B/P bulge without any obvious signature of the classical component. Our analysis suggest that many barred galaxies in the local universe might be hiding such low-mass classical bulges. We suggest that stellar population and chemodynamical analysis might be required in establishing the evidence for such low-mass classical bulges.
Sensitivity of Planktonic Aquatic Bacteria to Ciprofloxacin  [PDF]
Brij Verma, David Verma
Advances in Microbiology (AiM) , 2016, DOI: 10.4236/aim.2016.610074
Abstract: Many anthropogenic compounds, such as antibiotics, are found at trace levels (<μg·L-1) in aquatic and terrestrial systems. The effect of these compounds on the metabolism and function of microbes are difficult to assess because the assays used, such as the minimum inhibitory concentration (MIC) and the disk diffusion methods, lack the sensitivities to measure bacterial response to these very low levels of antibiotics on bacterial populations. Therefore, we theorized that the [3H] thymidine incorporation into DNA method might be sensitive in determining the effect of DNA inhibiting antibiotics on DNA production in planktonic bacteria in aquatic systems. Utilizing the 3H thymidine method, we measured the effects of ciprofloxacin on DNA production on planktonic bacteria in river and pond waters. Ciprofloxacin significantly (P < 0.02) inhibited river water bacteria at a concentration of 25 μg·L-1 but significant inhibition (P < 0.01) occurred at 1000 μg·L-1in pond water. The very low concentration required to inhibit DNA production in river water bacteria indicates that bacteria are extremely sensitive to antibiotics at very low concentrations. A likely reason for the differences in inhibition between the two waters is due to ciprofloxacin becoming bound, and possibly becoming biologically inactive, in the pond water due to higher dissolved organic carbon content. This work demonstrates that bacteria in some aquatic systems can be significantly impacted by low concentrations of anthropogenic antibiotics finding their way into these systems and that our assumptions as to the concentrations at which antibiotics affect microbes are highly underestimated.
Cholesterol Oxidase and Its Applications  [PDF]
Lata Kumari, Shamsher S. Kanwar
Advances in Microbiology (AiM) , 2012, DOI: 10.4236/aim.2012.22007
Abstract: Cholesterol oxidase (COX), a bi-functional FAD-containing microbial enzyme belongs to the family oxidoreductases. COX catalyses the oxidation of cholesterol into 4-cholesten-3-one. In recent time, cholesterol oxidase has received great attention due to its wider use in clinical (determination of serum cholesterol) laboratories practice and in the biocatalysis for the production of a number of steroids. COX has been shown to possess potent insecticidal activity, besides its use to track cell cholesterol. Moreover, COX is also implicated in the manifestation of some of the diseases of bacterial (tuberculosis), viral (HIV) and non-viral prion origin (Alzheimer's). These applications and disease mechanisms have promoted the need of screening, isolation and characterization of newer microbes from diverse habitats as a source of COX to learn more about its structural and functional aspects. In this review, we discuss microbial sources of COX, its structure and important biochemical properties besides its broad range of biological functions and applications.
Improve Intrusion Detection for Decision Tree with Stratified Sampling
Devendra kailashiya Kanak Saxena
International Journal of Electronics Communication and Computer Engineering , 2011,
Abstract: The present paper aims to improve accuracy of intrusion detection for decision tree algorithm. A number of techniques available for intrusion detection. In this paper we have supervised learning with preprocessing step for intrusion detection. The database is generated i using the stratified sampling techniques and the classification algorithm is applied on the samples. The accuracy of proposed model is compared with existing results in order to verify the validity and accuracy of the proposed model.
A Software Architecture Style for Medical Process Re-engineering
Umesh Banodha,Kanak Saxena
Lecture Notes in Engineering and Computer Science , 2011,
Abstract:
Page 1 /2164
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.