oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Search Results: 1 - 4 of 4 matches for " KACMARIK "
All listed articles are free for downloading (OA Articles)
Page 1 /4
Display every page Item
Ranging Property of the Dual-Band Band Limited Signal (DBBLS)
KOVAR, P.,KACMARIK, P.
Advances in Electrical and Computer Engineering , 2012, DOI: 10.4316/aece.2012.03014
Abstract: The Dual-Band Band Limited Signal (DBBLS) is a signal with its power spectral density consisting of two separate lobes. Signals that can be considered as DBBLS are for example signals with BOC, AltBOC modulation, signals modulated on two close carriers and many other signals, which are used in modern satellite navigation systems. This signal advantage is its excellent ranging property. The parted power spectral density enables processing the DBBLS as a single wideband signal in single-channel receiver or as two narrow band signals in two-channel receiver. The signal processing of the ranging signals is based on the calculation of the cross-correlation function, which can be calculated from the signal measured by the two-channel receiver by the derived method more efficiently than from the whole signal. The two-channel processing has nearly optimal performance, but the hardware and computation complexity is much lower. The developed method can by applied, for instance, for the processing of the Galileo E5 signal or pair of the Compass L1 signals.
Economic Galileo E5 Receiver
P. Kovar,P. Kacmarik,F. Vejrazka
Radioengineering , 2012,
Abstract: The Galileo system introduces an extremely wideband civil E5 signal for high precision navigation. The structure of the receiver for the E5 signal is complicated due to the signal complexity and the large bandwidth. It is possible to process the whole E5 signal or process separately E5a and E5b parts combining obtained results afterwards (we call here such method as piece-wise processing). The second procedure has three times worse standard deviation of the pseudorange then first one. The main goal of the paper is to present a design of an E5 receiver which we will call the economic E5 receiver (ecoE5). It is built from jointly controlled correlators for the processing of the E5a and E5b signals which are parts of the E5 signal. Control of these partial E5a and E5b correlators is realized by only one delay and one phase lock loops. The performance, i.e. the pseudorange noise and multipath errors, of the receiver equipped with the ecoE5, is only slightly worse (the standard deviation of the pseudorange noise is 10 - 20% larger) than the performance of the optimal E5 receiver and it is much better than the performance of the receiver combining the piecewise (E5a and E5b) measurements. The ecoE5 receiver hardware demands are about one quarter of the hardware demands of the classical E5 receiver.
Universality and Realistic Extensions to the Semi-Analytic Simulation Principle in GNSS Signal Processing
O. Jakubov,P. Kacmarik,P. Kovar,F. Vejrazka
Radioengineering , 2012,
Abstract: Semi-analytic simulation principle in GNSS signal processing bypasses the bit-true operations at high sampling frequency. Instead, signals at the output branches of the integrate&dump blocks are successfully modeled, thus making extensive Monte Carlo simulations feasible. Methods for simulations of code and carrier tracking loops with BPSK, BOC signals have been introduced in the literature. Matlab toolboxes were designed and published. In this paper, we further extend the applicability of the approach. Firstly, we describe any GNSS signal as a special instance of linear multi-dimensional modulation. Thereby, we state universal framework for classification of differently modulated signals. Using such description, we derive the semi-analytic models generally. Secondly, we extend the model for realistic scenarios including delay in the feed back, slowly fading multipath effects, finite bandwidth, phase noise, and a combination of these. Finally, a discussion on connection of this semi-analytic model and position-velocity-time estimator is delivered, as well as comparison of theoretical and simulated characteristics, produced by a prototype simulator developed at CTU in Prague.
The Witch Navigator - A Low Cost GNSS Software Receiver for Advanced Processing Techniques
O. Jakubov,P. Kovar,P. Kacmarik,F. Vejrazka
Radioengineering , 2010,
Abstract: The developement of advanced GNSS signal processing algorithms such as multi-constellation, multi-frequency and multi-antenna navigation requires an easily reprogrammable software defined radio solution. Various receiver architectures for this purpose have been introduced. RF front-end with FPGA universal correlators on ExpressCard connected directly to PC was selected and manufactured. Such a~unique hardware combination provides the GNSS researchers and engineers with a~great convenience of writing the signal processing algorithms including tracking, acquisition and positioning in the Linux application programming interface and enables them to reconfigure the RF front-end easily by the PC program. With more of these ExpressCards connected to the PC, the number of the RF channels, correlators or antennas can be increased to further boost the computational power. This paper reveals the implementation aspects of the receiver, named the Witch Navigator, and~gives the key test results.
Page 1 /4
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.