Abstract:
The use of sound in an interactive media environment has not been advanced, as a technology, as far as graphics or artificial intelligence. This discussion will explore the use of sound as a way to influence the player of a computer game, will show ways that a game can use sound as input, and will describe ways that the player can influence sound in a game. The role of sound in computer games will be explored some practical design ideas that can be used to improve the current state of the art will be given.

Abstract:
We examine the problem of damage spreading in the off-equilibrium mode coupling equations. The study is done for the spherical $p$-spin model introduced by Crisanti, Horner and Sommers. For $p>2$ we show the existence of a temperature transition $T_0$ well above any relevant thermodynamic transition temperature. Above $T_0$ the asymptotic damage decays to zero while below $T_0$ it decays to a finite value independent of the initial damage. This transition is stable in the presence of asymmetry in the interactions. We discuss the physical origin of this peculiar phase transition which occurs as a consequence of the non-linear coupling between the damage and the two-time correlation functions.

Abstract:
We consider damage spreading transitions in the framework of mode-coupling theory. This theory describes relaxation processes in glasses in the mean-field approximation which are known to be characterized by the presence of an exponentially large number of meta-stable states. For systems evolving under identical but arbitrarily correlated noises we demonstrate that there exists a critical temperature $T_0$ which separates two different dynamical regimes depending on whether damage spreads or not in the asymptotic long-time limit. This transition exists for generic noise correlations such that the zero damage solution is stable at high-temperatures being minimal for maximal noise correlations. Although this dynamical transition depends on the type of noise correlations we show that the asymptotic damage has the good properties of an dynamical order parameter such as: 1) Independence on the initial damage; 2) Independence on the class of initial condition and 3) Stability of the transition in the presence of asymmetric interactions which violate detailed balance. For maximally correlated noises we suggest that damage spreading occurs due to the presence of a divergent number of saddle points (as well as meta-stable states) in the thermodynamic limit consequence of the ruggedness of the free energy landscape which characterizes the glassy state. These results are then compared to extensive numerical simulations of a mean-field glass model (the Bernasconi model) with Monte Carlo heat-bath dynamics. The freedom of choosing arbitrary noise correlations for Langevin dynamics makes damage spreading a interesting tool to probe the ruggedness of the configurational landscape.

Abstract:
On the basis of the general form for the energy needed to adapt the connection strengths of a network in which learning takes place, a local learning rule is found for the changes of the weights. This biologically realizable learning rule turns out to comply with Hebb's neuro-physiological postulate, but is not of the form of any of the learning rules proposed in the literature. It is shown that, if a finite set of the same patterns is presented over and over again to the network, the weights of the synapses converge to finite values. Furthermore, it is proved that the final values found in this biologically realizable limit are the same as those found via a mathematical approach to the problem of finding the weights of a partially connected neural network that can store a collection of patterns. The mathematical solution is obtained via a modified version of the so-called method of the pseudo-inverse, and has the inverse of a reduced correlation matrix, rather than the usual correlation matrix, as its basic ingredient. Thus, a biological network might realize the final results of the mathematician by the energetically economic rule for the adaption of the synapses found in this article.

Abstract:
A recurrent neural network with noisy input is studied analytically, on the basis of a Discrete Time Master Equation. The latter is derived from a biologically realizable learning rule for the weights of the connections. In a numerical study it is found that the fixed points of the dynamics of the net are time dependent, implying that the representation in the brain of a fixed piece of information (e.g., a word to be recognized) is not fixed in time.

Abstract:
A recurrent neural network is considered that can retrieve a collection of patterns, as well as slightly perturbed versions of this `pure' set of patterns via fixed points of its dynamics. By replacing the set of dynamical constraints, i.e., the fixed point equations, by an extended collection of fixed-point-like equations, analytical expressions are found for the weights w_ij(b) of the net, which depend on a certain parameter b. This so-called basin parameter b is such that for b=0 there are, a priori, no perturbed patterns to be recognized by the net. It is shown by a numerical study, via probing sets, that a net constructed to recognize perturbed patterns, i.e., with values of the connections w_ij(b) with b unequal zero, possesses larger basins of attraction than a net made with the help of a pure set of patterns, i.e., with connections w_ij(b=0). The mathematical results obtained can, in principle, be realized by an actual, biological neural net.

Abstract:
Studies of chronic lymphocytic leukemia (CLL) have yielded substantial progress, however a lack of immortalized cell lines representative of the primary disease has hampered a full understanding of disease pathogenesis and development of new treatments. Here we describe a novel CLL cell line (OSU-CLL) generated by EBV transformation, which displays a similar cytogenetic and immunophenotype observed in the patient’s CLL (CD5 positive with trisomy 12 and 19). A companion cell line was also generated from the same patient (OSU-NB). This cell line lacked typical CLL characteristics, and is likely derived from the patient’s normal B cells. In vitro migration assays demonstrated that OSU-CLL exhibits migratory properties similar to primary CLL cells whereas OSU-NB has significantly reduced ability to migrate spontaneously or towards chemokine. Microarray analysis demonstrated distinct gene expression patterns in the two cell lines, including genes on chromosomes 12 and 19, which is consistent with the cytogenetic profile in this cell line. Finally, OSU-CLL was readily transplantable into NOG mice, producing uniform engraftment by three weeks with leukemic cells detectable in the peripheral blood spleen and bone marrow. These studies describe a new CLL cell line that extends currently available models to study gene function in this disease.

Abstract:
This paper critically evaluates the use of role-playing simulations in a negotiation course taught to graduate students. The course consisted primarily of a series of simulations involving the alternative dispute resolution (ADR) processes of negotiation, facilitation and mediation. Data were obtained from two sets of questionnaires completed by 41 students before and after the course. A review of previous research reveals that despite the widespread use of role-playing simulations in education, there has been very little empirical evaluation of their effectiveness, especially in conflict resolution and planning. Comparison of the data acquired from the two surveys generated findings regarding student understanding of ADR processes and key issues in conflict resolution; the educational value of simulations; the amenability of types of planning and planning goals to ADR; appropriate learning objectives; the importance of negotiation skills in planning; challenges in conducting effective simulations; the value of simulations in resolving real conflicts; the utility of negotiation theory; and obstacles to applying ADR to planning disputes. More generally, the paper concludes that role-playing simulations are very effective for teaching negotiation skills to students, and preparing them to manage actual conflicts skillfully and to participate effectively in real ADR processes. However, this technique is somewhat less valuable for teaching aspects of planning other than conflict resolution. Surprisingly, prior experience with simulations had no significant influence on the responses to the pre-course survey. Also surprising was the lack of a significant correlation between final exam scores and responses to relevant questions on the post-course survey.

Abstract:
Simulation in residency training is becoming more popular but there is limited evidence showing that it can improve a resident’s fund of knowledge, particularly in anesthesiology. We looked at whether a bronchoscopy simulation could improve performance on a thoracic anesthesia knowledge test administered both before and after using the simulator. Fourteen first-year anesthesiology residents completed the study with an average improvement on the test of 28% (p < 0.05). We conclude that bronchoscopy simulation is an effective method of educating anesthesiology residents.

Simulation in residency training is
becoming more popular but there is limited evidence showing that it can improve
a resident’s fund of knowledge, particularly in anesthesiology. We looked at
whether a bronchoscopy simulation could improve performance on a thoracic
anesthesia knowledge test administered both before and after using the
simulator. Fourteen first-year anesthesiology residents completed the study
with an average improvement on the test of 28% (p< 0.05). We conclude that bronchoscopy
simulation is an effective method of educating anesthesiology residents.