oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2020 ( 2 )

2019 ( 12 )

2018 ( 179 )

2017 ( 152 )

Custom range...

Search Results: 1 - 10 of 11413 matches for " Jinchuan Xing "
All listed articles are free for downloading (OA Articles)
Page 1 /11413
Display every page Item
A Study on the Tracking Problem in Vehicular Ad Hoc Networks
Xing Zhang,Bang Liu,Jinchuan Tang
International Journal of Distributed Sensor Networks , 2013, DOI: 10.1155/2013/809742
Abstract:
Jam Eyes: A Traffic Jam Awareness and Observation System Using Mobile Phones
Xing Zhang,Haigang Gong,Zongyi Xu,Jinchuan Tang
International Journal of Distributed Sensor Networks , 2012, DOI: 10.1155/2012/921208
Abstract:
You Take Care of the Drive, I Take Care of the Rule: A Traffic-Rule Awareness System Using Vehicular Sensors and Mobile Phones
Xing Zhang,Jidong Zhao,Jinchuan Tang,Bang Liu
International Journal of Distributed Sensor Networks , 2012, DOI: 10.1155/2012/319276
Abstract:
Modeling the amplification dynamics of human alu retrotransposons.
Hedges Dale J,Cordaux Richard,Xing Jinchuan,Witherspoon David J
PLOS Computational Biology , 2005,
Abstract: Retrotransposons have had a considerable impact on the overall architecture of the human genome. Currently, there are three lineages of retrotransposons (Alu, L1, and SVA) that are believed to be actively replicating in humans. While estimates of their copy number, sequence diversity, and levels of insertion polymorphism can readily be obtained from existing genomic sequence data and population sampling, a detailed understanding of the temporal pattern of retrotransposon amplification remains elusive. Here we pose the question of whether, using genomic sequence and population frequency data from extant taxa, one can adequately reconstruct historical amplification patterns. To this end, we developed a computer simulation that incorporates several known aspects of primate Alu retrotransposon biology and accommodates sampling effects resulting from the methods by which mobile elements are typically discovered and characterized. By modeling a number of amplification scenarios and comparing simulation-generated expectations to empirical data gathered from existing Alu subfamilies, we were able to statistically reject a number of amplification scenarios for individual subfamilies, including that of a rapid expansion or explosion of Alu amplification at the time of human-chimpanzee divergence.
You Take Care of the Drive, I Take Care of the Rule: A Traffic-Rule Awareness System Using Vehicular Sensors and Mobile Phones
Xing Zhang,Jidong Zhao,Jinchuan Tang,Bang Liu
International Journal of Distributed Sensor Networks , 2012, DOI: 10.1155/2012/319276
Abstract: Traffic rules are used to regulate drivers’ behaviours in modern traffic systems. In fact, all driving behaviours are presented by vehicles’ behaviours. If vehicles have awareness of their behaviours, it is possible that traffic rules are able to regulate vehicles instead of drivers. There are three advantages of vehicle regulation: (1) without worrying about violations of traffic rules and searching for traffic signs, drivers can pay more attention on emergency situations, such as jaywalking. (2) Many traffic violations are due to attention distraction; machines do not have the attention issues; therefore they can provide good traffic-rule obeying. (3) New traffic rules can be spread and applied more quickly and effectively through the Internet or Vehicular Ad hoc NETworks (VANETs). In this paper, we propose a novel traffic-rule awareness system using vehicular sensors and mobile phones. It translates traffic rules into combinations of vehicular sensors, GPS device, and Geography Information System (GIS); the system can tell whether a driver violates the traffic rules and help him to amend his driving behaviour immediately. Experiments in real driving environments show that our system can be aware of the traffic rules accurately and immediately. 1. Introduction During the year 2011, there were 11856 traffic accidents that happened in Sichuan province of China and 95% of the accidents are caused by traffic violations [1]. If traffic-violation rate can be significantly decreased, a lot of lives can be saved from traffic accidents. In fact, most traffic violations are not on purpose; the reason of high traffic-violation rate is that the traffic rules are designed to regulate drivers’ behaviours. As long as drivers are human beings, they will suffer from memory issues and attention distraction. Their memory and concentration will be severely affected by mood, alcohol, drugs, and environment. Even a short conversation during driving will distract drivers and cause unnecessary traffic violations. Google self-driving car [2] is a good attempt to decrease the traffic-violation rate, because machines do not have the memory and concentration issues like humans. However, google self-driving car only focuses on self-driving; it has not yet taken traffic rules into consideration except for traffic lights. Some other works like [3] monitor dangerous driving behaviours like aggressive turns, acceleration, and braking and help drivers to correct these unsafe behaviours. However, they did not take traffic rules into consideration. Actually, even if driving behaviours
Jam Eyes: A Traffic Jam Awareness and Observation System Using Mobile Phones
Xing Zhang,Haigang Gong,Zongyi Xu,Jinchuan Tang,Bang Liu
International Journal of Distributed Sensor Networks , 2012, DOI: 10.1155/2012/921208
Abstract: Traffic jam is a very common and very annoying thing in urban traffic. The most annoying part in traffic jams is not that you have to wait for a long time but that you do not even know how long you have to wait and what causes the traffic jam. However, the pain of being trapped in traffic jams seems to be neglected by existing research works; they put their focuses on either mathematical modeling or optimal routing for those not trapped in traffic jams. In this paper, we propose a traffic jam awareness and observation system using mobile phones. It can tell a driver how many vehicles ahead are trapped in traffic jam and how much time the driver would probably wait. Moreover, it can provide real-time video streams from the head vehicles of the traffic queue so that the driver can see what causes the traffic jam and the progress of handling the traffic jam. The system is environment independen; it can even work when the traffic jam happens in a tunnel. Experiments show that our system can find the head vehicles of the traffic queue and give the queue length accurately, and the video streams coming from the head vehicles reflect the actual situation of the traffic jam basically. 1. Introduction Traffic jam is already a daily routine of modern urban traffic. The sources of traffic jam can be categorized into three ways: a temporary obstruction, a permanent capacity constraint in the network itself, and a stochastic fluctuation in the demand within a particular sector of the network [1]. Obviously, the second way is the fundamental reason why traffic jam happens so frequently. Researchers have been trying their best to reduce the frequency of traffic jam; however, their works are basically a kind of optimization, as long as the network capacity is far from handling the actual increasing traffic flows, traffic jams will be inevitable and be getting worse. Now that traffic jam is inevitable, we should at least pay some attention to relieving sufferings of people from trapping in traffic jams. Almost everyone living in the city has experienced traffic jam; the most annoying thing in traffic jam is not that people have to wait for a long time but that people even do not know how long they have to wait. When people are trapped in a traffic jam, unless they are the head of traffic queue, they hardly know what causes the traffic jam, how long is the traffic queue, and how is the progress of handling the traffic jam. In psychology, lines of evidence shows that people have strong fear of unknown [2]. Although the mentioned information cannot handle the traffic jam,
Mobile element scanning (ME-Scan) by targeted high-throughput sequencing
David J Witherspoon, Jinchuan Xing, Yuhua Zhang, W Scott Watkins, Mark A Batzer, Lynn B Jorde
BMC Genomics , 2010, DOI: 10.1186/1471-2164-11-410
Abstract: Here we present a novel method for identifying nearly all insertions of a ME subfamily in the whole genomes of multiple individuals and simultaneously genotyping (for presence or absence) those insertions that are variable in the population. We use ME-specific primers to construct DNA libraries that contain the junctions of all ME insertions of the subfamily, with their flanking genomic sequences, from many individuals. Individual-specific "index" sequences are designed into the oligonucleotide adapters used to construct the individual libraries. These libraries are then pooled and sequenced using a ME-specific sequencing primer. Mobile element insertion loci of the target subfamily are uniquely identified by their junction sequence, and all insertion junctions are linked to their individual libraries by the corresponding index sequence. To test this method's feasibility, we apply it to the human AluYb8 and AluYb9 subfamilies. In four individuals, we identified a total of 2,758 AluYb8 and AluYb9 insertions, including nearly all those that are present in the reference genome, as well as 487 that are not. Index counts show the sequenced products from each sample reflect the intended proportions to within 1%. At a sequencing depth of 355,000 paired reads per sample, the sensitivity and specificity of ME-Scan are both approximately 95%.Mobile Element Scanning (ME-Scan) is an efficient method for quickly genotyping mobile element insertions with very high sensitivity and specificity. In light of recent improvements to high-throughput sequencing technology, it should be possible to employ ME-Scan to genotype insertions of almost any mobile element family in many individuals from any species.Mobile elements (MEs) are DNA sequences that can replicate and insert themselves into new loci within larger host genomes. This strategy has proved very successful: MEs are evolutionarily ancient, highly diversified in form, ubiquitous in distribution, and often extremely numerous with
A characterization of positive linear maps and criteria of entanglement for quantum states
Jinchuan Hou
Physics , 2010, DOI: 10.1088/1751-8113/43/38/385201
Abstract: Let $H$ and $K$ be (finite or infinite dimensional) complex Hilbert spaces. A characterization of positive completely bounded normal linear maps from ${\mathcal B}(H)$ into ${\mathcal B}(K)$ is given, which particularly gives a characterization of positive elementary operators including all positive linear maps between matrix algebras. This characterization is then applied give a representation of quantum channels (operations) between infinite-dimensional systems. A necessary and sufficient criterion of separability is give which shows that a state $\rho$ on $H\otimes K$ is separable if and only if $(\Phi\otimes I)\rho\geq 0$ for all positive finite rank elementary operators $\Phi$. Examples of NCP and indecomposable positive linear maps are given and are used to recognize some entangled states that cannot be recognized by the PPT criterion and the realignment criterion.
Modeling the Amplification Dynamics of Human Alu Retrotransposons
Dale J Hedges ,Richard Cordaux ,Jinchuan Xing,David J Witherspoon,Alan R Rogers,Lynn B Jorde,Mark A Batzer
PLOS Computational Biology , 2005, DOI: 10.1371/journal.pcbi.0010044
Abstract: Retrotransposons have had a considerable impact on the overall architecture of the human genome. Currently, there are three lineages of retrotransposons (Alu, L1, and SVA) that are believed to be actively replicating in humans. While estimates of their copy number, sequence diversity, and levels of insertion polymorphism can readily be obtained from existing genomic sequence data and population sampling, a detailed understanding of the temporal pattern of retrotransposon amplification remains elusive. Here we pose the question of whether, using genomic sequence and population frequency data from extant taxa, one can adequately reconstruct historical amplification patterns. To this end, we developed a computer simulation that incorporates several known aspects of primate Alu retrotransposon biology and accommodates sampling effects resulting from the methods by which mobile elements are typically discovered and characterized. By modeling a number of amplification scenarios and comparing simulation-generated expectations to empirical data gathered from existing Alu subfamilies, we were able to statistically reject a number of amplification scenarios for individual subfamilies, including that of a rapid expansion or explosion of Alu amplification at the time of human–chimpanzee divergence.
A mobile element-based evolutionary history of guenons (tribe Cercopithecini)
Jinchuan Xing, Hui Wang, Yuhua Zhang, David A Ray, Anthony J Tosi, Todd R Disotell, Mark A Batzer
BMC Biology , 2007, DOI: 10.1186/1741-7007-5-5
Abstract: We identified 151 novel Alu insertion loci from 11 species of tribe Cercopithecini, and used these insertions and 17 previously reported loci to infer a phylogenetic tree of the tribe Cercopithecini. Our results robustly supported the following relationships: (i) Allenopithecus is the basal lineage within the tribe; (ii) Cercopithecus lhoesti (L'Hoest's monkey) forms a clade with Chlorocebus aethiops (African green monkey) and Erythrocebus patas (patas monkey), supporting a single arboreal to terrestrial transition within the tribe; (iii) all of the Cercopithecus except C. lhoesti form a monophyletic group; and (iv) contrary to the common belief that Miopithecus is one of the most basal lineages in the tribe, M. talapoin (talapoin) forms a clade with arboreal members of Cercopithecus, and the terrestrial group (C. lhoesti, Chlorocebus aethiops and E. patas) diverged from this clade after the divergence of Allenopithecus. Some incongruent loci were found among the relationships within the arboreal Cercopithecus group. Several factors, including incomplete lineage sorting, concurrent polymorphism and hybridization between species may have contributed to the incongruence.This study presents one of the most robust phylogenetic hypotheses for the tribe Cercopithecini and demonstrates the advantages of SINE insertions for phylogenetic studies.Guenons (tribe Cercopithecini) are a species-rich group of primates with a distribution throughout sub Saharan Africa. With their diverse morphology, ecology, behavior and social organizations, guenons have attracted considerable attention from both primatologists and evolutionary biologists [1,2]. In addition, some species in the tribe (e.g. Chlorocebus aethiops) have been widely used in biomedical studies [3-5]. Based on Groves' classification [6], the tribe Cercopithecini consists of five genera (Erythrocebus, Chlorocebus, Cercopithecus, Miopithecus and Allenopithecus) comprising 36 species. The evolutionary history of guenons may
Page 1 /11413
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.