Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99


Any time

2019 ( 65 )

2018 ( 368 )

2017 ( 363 )

2016 ( 335 )

Custom range...

Search Results: 1 - 10 of 45775 matches for " Jin-Hoi Kim "
All listed articles are free for downloading (OA Articles)
Page 1 /45775
Display every page Item
Alpha-Fetoprotein, Identified as a Novel Marker for the Antioxidant Effect of Placental Extract, Exhibits Synergistic Antioxidant Activity in the Presence of Estradiol
Hye Yeon Choi, Seung Woo Kim, BongWoo Kim, Hae Na Lee, Su-Jeong Kim, Minjung Song, Sol Kim, Jungho Kim, Young Bong Kim, Jin-Hoi Kim, Ssang-Goo Cho
PLOS ONE , 2014, DOI: 10.1371/journal.pone.0099421
Abstract: Placenta, as a reservoir of nutrients, has been widely used in medical and cosmetic materials. Here, we focused on the antioxidant properties of placental extract and attempted to isolate and identify the main antioxidant factors. Porcine placental extracts were prepared through homogenization or acid hydrolysis, and their antioxidant activity was investigated in the human keratinocyte HaCaT cell line. Treatment with homogenized placental extract (H-PE) increased the cell viability of H2O2-treated HaCaT cells more than two-fold. H-PE treatment suppressed H2O2-induced apoptotic and necrotic cell death and decreased intracellular ROS levels in H2O2-treated HaCaT cells. The antioxidant factors in H-PE were found to be thermo-unstable and were thus expected to include proteins. The candidate antioxidant proteins were fractionated with cation-exchange, anion-exchange, and size-exclusion chromatography, and the antioxidant properties of the chromatographic fractions were investigated. We obtained specific antioxidant fractions that suppressed ROS generation and ROS-induced DNA strand breaks. From silver staining and MALDI-TOF analyses, alpha-fetoprotein (AFP) precursor was identified as a main marker for the antioxidant effect of H-PE. Purified AFP or ectopically expressed AFP exhibited synergistic antioxidant activity in the presence of estradiol. Taken together, our data suggest that AFP, a serum glycoprotein produced at high levels during fetal development, is a novel marker protein for the antioxidant effect of the placenta that exhibits synergistic antioxidant activity in the presence of estradiol.
Activation of Peroxisome Proliferator-Activated Receptor by Rosiglitazone Inhibits Lipopolysaccharide-Induced Release of High Mobility Group Box 1
Jung Seok Hwang,Eun Sil Kang,Sun Ah Ham,Taesik Yoo,Hanna Lee,Kyung Shin Paek,Chankyu Park,Jin-Hoi Kim,Dae-Seog Lim,Han Geuk Seo
Mediators of Inflammation , 2012, DOI: 10.1155/2012/352807
Abstract: Peroxisome proliferator-activated receptors (PPARs) are shown to modulate the pathological status of sepsis by regulating the release of high mobility group box 1 (HMGB1), a well-known late proinflammatory mediator of sepsis. Ligand-activated PPARs markedly inhibited lipopolysaccharide- (LPS) induced release of HMGB1 in RAW 264.7 cells. Among the ligands of PPAR, the effect of rosiglitazone, a specific ligand for PPAR , was superior in the inhibition of HMGB1 release induced by LPS. This effect was observed in cells that received rosiglitazone before LPS or after LPS treatment, indicating that rosiglitazone is effective in both treatment and prevention. Ablation of PPAR with small interfering RNA or GW9662-mediated inhibition of PPAR abolished the effect of rosiglitazone on HMGB1 release. Furthermore, the overexpression of PPAR markedly potentiated the inhibitory effect of rosiglitazone on HMGB1 release. In addition, rosiglitazone inhibited LPS-induced expression of Toll-like receptor 4 signal molecules, suggesting a possible mechanism by which rosiglitazone modulates HMGB1 release. Notably, the administration of rosiglitazone to mice improved survival rates in an LPS-induced animal model of endotoxemia, where reduced levels of circulating HMGB1 were demonstrated. Taken together, these results suggest that PPARs play an important role in the cellular response to inflammation by inhibiting HMGB1 release. 1. Introduction High mobility group box 1 (HMGB1) is a highly conserved nonhistone nuclear protein that exhibits diverse functions according to its cellular location. In the intracellular compartment, it participates in a number of fundamental cellular processes such as transcription, replication, and DNA repair [1]. In addition to its intracellular functions, extracellular HMGB1 plays an important role in inflammatory responses when actively secreted from stressed cells [2]. Proinflammatory properties of HMGB1 as a crucial cytokine were first documented in a report demonstrating that HMGB1 is actively secreted by activated macrophages, serving as a late mediator of lethality in a mouse model of sepsis [3]. Furthermore, circulating HMGB1 levels were elevated with delayed fashion in the mouse model and in patients with sepsis characterized by overwhelming inflammatory and immune responses, leading to tissue damage, multiple-organ failure and death [3–5]. Recent reports indicated that HMGB1 is a late mediator of sepsis, acting as a key regulator in acute and chronic inflammation [2, 3]. In fact, the administration of anti-HMGB1 antibodies or inhibitors,
Comparative proteomic analysis of malformed umbilical cords from somatic cell nuclear transfer-derived piglets: implications for early postnatal death
Jong-Yi Park, Jae-Hwan Kim, Yun-Jung Choi, Kyu-Chan Hwang, Seong-Keun Cho, Ho-Hyun Park, Seung-Sam Paik, Teoan Kim, ChanKyu Park, Hoon Lee, Han Seo, Soo-Bong Park, Seongsoo Hwang, Jin-Hoi Kim
BMC Genomics , 2009, DOI: 10.1186/1471-2164-10-511
Abstract: Microscopic analysis revealed complete occlusive thrombi and the absence of columnar epithelial layers in MUC (scNT-MUC) derived from scNT piglets. scNT-MUC had significantly lower expression levels of platelet endothelial cell adhesion molecule-1 (PECAM-1) and angiogenesis-related genes than umbilical cords of normal scNT piglets (scNT-N) that survived into adulthood. Endothelial cells derived from scNT-MUC migrated and formed tubules more slowly than endothelial cells from control umbilical cords or scNT-N. Proteomic analysis of scNT-MUC revealed significant down-regulation of proteins involved in the prevention of oxidative stress and the regulation of glycolysis and cell motility, while molecules involved in apoptosis were significantly up-regulated. Histomorphometric analysis revealed severe calcification in the kidneys and placenta, peliosis in the liver sinusoidal space, abnormal stromal cell proliferation in the lungs, and tubular degeneration in the kidneys in scNT piglets with MUC. Increased levels of apoptosis were also detected in organs derived from all scNT piglets with MUC.These results suggest that MUC contribute to fetal malformations, preterm birth and low birth weight due to underlying molecular defects that result in hypoplastic umbilical arteries and/or placental insufficiency. The results of the current study demonstrate the effects of MUC on fetal growth and organ development in scNT-derived pigs, and provide important insight into the molecular mechanisms underlying angiogenesis during umbilical cord development.In the past decade, several species of animal, including goat, pig, sheep and cattle, have been cloned using scNT techniques [1]. However, while cloning is widely used in basic research, as well as in some biomedical and agricultural applications, a number of substantial problems exist with the current technologies, including relatively low success rates and severe defects of the fetus and/or placenta resulting in abortion, neonatal d
Alpha 1,3-Galactosyltransferase Deficiency in Pigs Increases Sialyltransferase Activities That Potentially Raise Non-Gal Xenoantigenicity
Jong-Yi Park,Mi-Ryung Park,Deug-Nam Kwon,Min-Hui Kang,Mihye Oh,Jae-Woong Han,Ssang-Goo Cho,Chankyu Park,Dong-Ku Kim,Hyuk Song,Jae-Wook Oh,Jin-Hoi Kim
Journal of Biomedicine and Biotechnology , 2011, DOI: 10.1155/2011/560850
Abstract: We examined whether deficiency of the GGTA1 gene in pigs altered the expression of several glycosyltransferase genes. Real-time RT-PCR and glycosyltransferase activity showed that 2 sialyltransferases [α2,3-sialyltransferase (α2,3ST) and α2,6-sialyltransferase (α2,6ST)] in the heterozygote GalT KO liver have higher expression levels and activities compared to controls. Enzyme-linked lectin assays indicated that there were also more sialic acid-containing glycoconjugate epitopes in GalT KO livers than in controls. The elevated level of sialic-acid-containing glycoconjugate epitopes was due to the low level of α-Gal in heterozygote GalT KO livers. Furthermore, proteomics analysis showed that heterozygote GalT KO pigs had a higher expression of NAD
TCF7L2 Modulates Glucose Homeostasis by Regulating CREB- and FoxO1-Dependent Transcriptional Pathway in the Liver
Kyoung-Jin Oh,Jinyoung Park,Su Sung Kim,Hyunhee Oh,Cheol Soo Choi,Seung-Hoi Koo
PLOS Genetics , 2012, DOI: 10.1371/journal.pgen.1002986
Abstract: Peripheral insulin resistance contributes to the development of type 2 diabetes. TCF7L2 has been tightly associated with this disease, although the exact mechanism was largely elusive. Here we propose a novel role of TCF7L2 in hepatic glucose metabolism in mammals. Expression of medium and short isoforms of TCF7L2 was greatly diminished in livers of diet-induced and genetic mouse models of insulin resistance, prompting us to delineate the functional role of these isoforms in hepatic glucose metabolism. Knockdown of hepatic TCF7L2 promoted increased blood glucose levels and glucose intolerance with increased gluconeogenic gene expression in wild-type mice, in accordance with the PCR array data showing that only the gluconeogenic pathway is specifically up-regulated upon depletion of hepatic TCF7L2. Conversely, overexpression of a nuclear isoform of TCF7L2 in high-fat diet-fed mice ameliorated hyperglycemia with improved glucose tolerance, suggesting a role of this factor in hepatic glucose metabolism. Indeed, we observed a binding of TCF7L2 to promoters of gluconeogenic genes; and expression of TCF7L2 inhibited adjacent promoter occupancies of CREB, CRTC2, and FoxO1, critical transcriptional modules in hepatic gluconeogenesis, to disrupt target gene transcription. Finally, haploinsufficiency of TCF7L2 in mice displayed higher glucose levels and impaired glucose tolerance, which were rescued by hepatic expression of a nuclear isoform of TCF7L2 at the physiological level. Collectively, these data suggest a crucial role of TCF7L2 in hepatic glucose metabolism; reduced hepatic expression of nuclear isoforms of this factor might be a critical instigator of hyperglycemia in type 2 diabetes.
Effects of Interfacial Charge Depletion in Organic Thin-Film Transistors with Polymeric Dielectrics on Electrical Stability
Jaehoon Park,Jin-Hyuk Bae,Won-Ho Kim,Min-Hoi Kim,Chang-Min Keum,Sin-Doo Lee,Jong Sun Choi
Materials , 2010, DOI: 10.3390/ma3063614
Abstract: We investigated the electrical stabilities of two types of pentacene-based organic thin-film transistors (OTFTs) with two different polymeric dielectrics: polystyrene (PS) and poly(4-vinyl phenol) (PVP), in terms of the interfacial charge depletion. Under a short-term bias stress condition, the OTFT with the PVP layer showed a substantial increase in the drain current and a positive shift of the threshold voltage, while the PS layer case exhibited no change. Furthermore, a significant increase in the off-state current was observed in the OTFT with the PVP layer which has a hydroxyl group. In the presence of the interfacial hydroxyl group in PVP, the holes are not fully depleted during repetitive operation of the OTFT with the PVP layer and a large positive gate voltage in the off-state regime is needed to effectively refresh the electrical characteristics. It is suggested that the depletion-limited holes at the interface, i.e., interfacial charge depletion, between the PVP layer and the pentacene layer play a critical role on the electrical stability during operation of the OTFT.
Serum microRNA-21 as a Potential Biomarker for Response to Hypomethylating Agents in Myelodysplastic Syndromes
Yundeok Kim, June-Won Cheong, Yeo-Kyeoung Kim, Ju-In Eom, Hoi-Kyung Jeung, Soo Jeong Kim, Dohyu Hwang, Jin Seok Kim, Hyeuong Joon Kim, Yoo Hong Min
PLOS ONE , 2014, DOI: 10.1371/journal.pone.0086933
Abstract: Identification of biomarkers that predict responses to hypomethylating agents (HMAs) will allow optimal strategies for epigenetic therapy in myelodysplastic syndromes (MDS) to be established. Serum miR-21 was quantitatively measured in 58 MDS patients treated with HMAs and 14 healthy controls. Serum miR-192 was an internal control, and diagnostic performance was evaluated according to receiver operating characteristics (ROCs). ROC analysis indicated that serum miR-21 levels differentiated responders from non-responders with an area under the curve of 0.648 (95% confidence, 0.49 to 0.72). The baseline level of serum miR-21 was significantly lower in the responder group than in the non-responder group (P = 0.041). The overall response rate (ORR) of the high miR-21 group was significantly lower than that of the low miR-21 group (41.2 vs. 73.2%, P = 0.021). Progression-free survival (PFS) was significantly inferior in the high group versus the low group (14.0 vs. 44.5 months, P = 0.001). Multivariate analyses revealed that the initial serum miR-21 level (P = 0.001) and circulating blasts (P = 0.007) were prognostic factors for PFS. Serum miR-21 level was significantly associated with ORR and PFS in MDS patients treated with HMAs. Although validation with a large prospective study is required, serum miR-21 is a potential biomarker of epigenetic therapy in MDS patients.
A WiFi-ZigBee Building Area Network Design of High Traffics AMI for Smart Grid  [PDF]
Hoi Yan Tung, Kim Fung Tsang, Hoi Ching Tung, Veseline Rakocevic, Kwok Tai Chui, Yat Wah Leung
Smart Grid and Renewable Energy (SGRE) , 2012, DOI: 10.4236/sgre.2012.34043
Abstract: A WiFi-ZigBee hybrid BAN solution, namely WiZBAN, is proposed and implemented to cater for the development of high traffic AMI for smart grid application. It is important to highlight that the major challenge of WiZBAN is to handle the high density environment which results in heavy traffic loading and weak signal propagation. To overcome the captioned problem, Vertical Backbone Communication (VBC) and Horizontal Floor Communication (HFC) are defined for WiZBAN. The WiZBAN consists of WiZBAN Gateway (WiZGW), WiZBAN Meter Hub (WiZBAN) and WiZBAN In Home Display (WiZIHD) which caters for the smart grids services including smart metering and demand response. The WiZGW is the entrance of WiZBAN and connects WiZBAN to utilities. The WiZGW also teams up with WiZMH to enables VBC. On the other hand, WiZMH serves as the interception point of VBC and HFC. It interacts with smart meters and sets up the HFC together with WiZIHD to provide the user interface for end users. To shorten the transmission time, WiFi is adopted for VBC while ZigBee is applied to HCF to overcome the weak signal propagation. To investigate the performance of WiZBAN, a case study has been conducted based on an existing 23 floor residential building. From the measured and simulated results, the average round trip delay of demand response and smart metering are found to be 0.6 s and 9 s respectively.
Prevention of Avian Influenza Virus by Ultraviolet Radiation and Prediction of Outbreak by Satellite Parameters  [PDF]
Tai-Jin Kim
Journal of Biomedical Science and Engineering (JBiSE) , 2018, DOI: 10.4236/jbise.2018.117015
Abstract: The present study showed that avian influenza virus (AIV) occurred in the regions with rice and wheat productions under low ultraviolet (UV) radiation while there were negligible AIV outbreaks in the regions with a high rate of skin cancer due to extensive UV radiation. It is therefore proposed that having artificial UV radiation with poultry farmhouses is a simple solution to suppress AIV outbreaks. AIV outbreaks can be predicted a few months in advance by remote sensing satellite parameters such as Cosmos (minimum sunspot number, 10.7 cm solar flux, high UV radiation), Poles (CO2, O3 hole deterioration, hydroxyl layer temperature, ice-melting, chlorophyll or algae, krill, penguin, guillemot), and Continents (migratory birds, desert dust, low UV radiation, waters, fish, rice and wheat, climate). Since there was an abrupt 2% rise of global CO2 emissions in 2017, while the minimum sunspot number is simultaneously reached at the end of 2018, there can be an extensive UV radiation for mutant AIV in the Poles to have the highest degree of damage by AIV in regions such as U.S., East Asia, China, South Korea, Japan, west Africa, and Europe from November of 2018 till April of 2019.
Earthquakes in Cretaceous Granites Associated with North Korean Nuclear Tests  [PDF]
Tai-Jin Kim
Open Journal of Earthquake Research (OJER) , 2018, DOI: 10.4236/ojer.2018.73011
The goal of this study was to examine the danger of six North Korean underground nuclear tests to the regional safety associated with deadly earthquakes and volcanoes. Geological instabilities at Cretaceous granites were triggered by North Korean nuclear tests to induce the enhanced seismic impacts on earthquakes in China, Russia, Japan, Taiwan (China), South Korea, USA, Ecuador, Vanuatu, Indonesia, and Mexico after lag times between the nuclear test site and individual epicenters. It is urgent to prohibit North Korean nuclear tests for the regional stability of surrounding countries with Cretaceous granites.
Page 1 /45775
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.