Abstract:
I review the development of numerical evolution codes for general relativity based upon the characteristic initial-value problem. Progress in characteristic evolution is traced from the early stage of 1D feasibility studies to 2D-axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black-hole spacetime. Cauchy codes have now been successful at simulating all aspects of the binary black-hole problem inside an artificially constructed outer boundary. A prime application of characteristic evolution is to extend such simulations to null infinity where the waveform from the binary inspiral and merger can be unambiguously computed. This has now been accomplished by Cauchy-characteristic extraction, where data for the characteristic evolution is supplied by Cauchy data on an extraction worldtube inside the artificial outer boundary. The ultimate application of characteristic evolution is to eliminate the role of this outer boundary by constructing a global solution via Cauchy-characteristic matching. Progress in this direction is discussed.

Abstract:
I review the development of numerical evolution codes for general relativity based upon the characteristic initial value problem. Progress is traced from the early stage of 1D feasibility studies to current 3D codes that simulate binary black holes. A prime application of characteristic evolution is Cauchy-characteristic matching, which is also reviewed.

Abstract:
I review the development of numerical evolution codes for general relativity based upon the characteristic initial value problem. Progress is traced from the early stage of 1D feasibility studies to 2D axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black hole spacetime. Cauchy codes have now been successful at simulating all aspects of the binary black hole problem inside an artificially constructed outer boundary. A prime application of characteristic evolution is to eliminate the role of this artificial outer boundary via Cauchy-characteristic matching, by which the radiated waveform can be computed at null infinity. Progress in this direction is discussed.

Abstract:
I review the development of numerical evolution codes for general relativity based upon the characteristic initial value problem. Progress is traced from the early stage of 1D feasibility studies to 2D axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black hole spacetime. A prime application of characteristic evolution is to compute waveforms via Cauchy-characteristic matching, which is also reviewed.

Abstract:
We review the development of numerical evolution codes for general relativity based upon the characteristic initial value problem. Progress is traced from the early stage of 1D feasibility studies to current 3D black hole codes that run forever. A prime application of characteristic evolution is Cauchy-characteristic matching, which is also reviewed.

Abstract:
The principle part of Einstein equations in the harmonic gauge consists of a constrained system of 10 curved space wave equations for the components of the space-time metric. A well-posed initial boundary value problem based upon a new formulation of constraint-preserving boundary conditions of the Sommerfeld type has recently been established for such systems. In this paper these boundary conditions are recast in a geometric form. This serves as a first step toward their application to other metric formulations of Einstein's equations.

Abstract:
I review the development of numerical evolution codes for general relativity based upon the characteristic initial value problem. Progress in characteristic evolution is traced from the early stage of 1D feasibility studies to 2D axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black hole spacetime. Cauchy codes have now been successful at simulating all aspects of the binary black hole problem inside an artificially constructed outer boundary. A prime application of characteristic evolution is to extend such simulations to null infinity where the waveform from the binary inspiral and merger can be unambiguously computed. This has now been accomplished by Cauchy-characteristic extraction, where data for the characteristic evolution is supplied by Cauchy data on an extraction worldtube inside the artificial outer boundary. The ultimate application of characteristic evolution is to eliminate the role of this outer boundary by constructing a global solution via Cauchy-characteristic matching. Progress in this direction is discussed.

Abstract:
I describe a new algorithm for solving nonlinear wave equations. In this approach, evolution takes place on characteristic hypersurfaces. The algorithm is directly applicable to electromagnetic, Yang-Mills and gravitational fields and other systems described by second differential order hyperbolic equations. The basic ideas should also be applicable to hydrodynamics. It is an especially accurate and efficient way for simulating waves in regions where the characteristics are well behaved. A prime application of the algorithm is to Cauchy-characteristic matching, in which this new approach is matched to a standard Cauchy evolution to obtain a global solution. In a model problem of a nonlinear wave, this proves to be more accurate and efficient than any other present method of assigning Cauchy outer boundary conditions. The approach was developed to compute the gravitational wave signal produced by collisions of two black holes. An application to colliding black holes is presented.

Abstract:
I review the development of numerical evolution codes for general relativity based upon the characteristic initial value problem. Progress is traced from the early stage of 1D feasibility studies to 2D axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black spacetime. A prime application of characteristic evolution is to compute waveforms via Cauchy-characteristic matching, which is also reviewed.

Abstract:
A review of the treatment of boundaries in general relativity is presented with the emphasis on application to the formulations of Einstein's equations used in numerical relativity. At present, it is known how to treat boundaries in the harmonic formulation of Einstein's equations and a tetrad formulation of the Einstein-Bianchi system. However, a universal approach valid for other formulations is not in hand. In particular, there is no satisfactory boundary theory for the 3+1 formulations which have been highly successful in binary black hole simulation. I discuss the underlying problems that make the initial-boundary value problem much more complicated than the Cauchy problem. I review the progress that has been made and the important open questions that remain.