Abstract:
We developed a theory of charge transport in a system of non-interacting polarons. The theory was conducted to a compact relation through a nonperturbative method based on electron-phonon Hamiltonian. The derived final result represents both two different limits of band and phonon assisted transports which depends on temperature and electron-phonon coupling strength.

Abstract:
In this paper we explain in detail the design of a semiconductor laser coupled with the reflected beams from a grating. Since the beams reflected are diffracted at different angles, only one component of them can be resonated in the cavity. This technique reduces the output frequency of the laser and increases its stability. Since this system has various applications in the spectroscopy, gas concentrations, air pollution measurements, investigation of atomic and molecular structure, and so on, system is believed to be simple and accurate. This design is made for the first time in Iran and its reliability has been tested by the measurement of the rubidium atom, and the result is given.

Abstract:
We have computed the absorption and emission energies and hence Stokes shifts of small diamondoids as a function of size using different theoretical approaches, including density functional theory and quantum Monte Carlo (QMC) calculations. The absorption spectra of these molecules were also investigated by time-dependent density functional theory (TD-DFT) and compared with experiment. We have analyzed the structural distortion and formation of a self-trapped exciton in the excited state, and we have studied the effects of these on the Stokes shift as a function of size. Compared to recent experiments, QMC overestimates the excitation energies by about 0.8(1) eV on average. Benefiting from a cancellation of errors, the optical gaps obtained in DFT calculations with the B3LYP functional are in better agreement with experiment. It is also shown that TD-B3LYP calculations can reproduce most of the features found in the experimental spectra. According to our calculations, the structures of diamondoids in the excited state show a distortion which is hardly noticeable compared to that found for methane. As the number of diamond cages is increased, the distortion mechanism abruptly changes character. We have shown that the Stokes shift is size-dependent and decreases with the number of diamond cages. The rate of decrease in the Stokes shift is on average 0.1 eV per cage for small diamondoids.

Abstract:
Several methods have been offered for silver nanoparticles production. A new method has been developed including shape-controlled synthesis of silver nanoparticles in different shapes. Dendrite, cubic, spherical and porous structures were formed by self-arrangement of the surfactant as a template under ultrasound radiation. In order to produce silver particles, ascorbic acid has been used to reduce an aqueous solution of silver nitrate in the presence of dodecylbenzenesulfonic acid sodium salt, poly (vinyl pyrrolidinone), and a mixture of organic and aqueous solutions. Scanning electron microscopy and transmission electron microscopy analysis revealed that the morphology and the size of produced particles were influenced by the type of capping agent, presence of ultrasound radiation, and crystallization time. In order to measure the surface roughness of dendrite and porous particles, an optical reflectometer was used. Surfactant molecules in an aqueous solution can aggregate in different shapes depending on temperature, ionic property of solution, time, and aprotic solvent content.

Abstract:
The carotenoid pigments specifically astaxanthin has many significant applications in food, pharmaceutical and cosmetic industries. The goal of this research was the extraction of Astaxanthin from a certain Persian Gulf shrimp species waste (Penaeus semisulcatus), purification and identification of the pigment by chemical and microbial methods. Microbial fermentation was obtained by inoculation of two Lactobacillus species Lb. plantarum and Lb. acidophilus in the medium culture containing shrimp waste powder by the intervention of lactose sugar, yeast extract, the composition of Both and the coolage (-20oC). The carotenoids were extracted by an organic solvent system. After purification of astaxanthin with the thin layer chromatography method by spectrophotometer, NMR and IR analysis the presence of astaxanthin esters was recognized in this specific species of Persian Gulf shrimp. Results obtained from this study showed that the coolage at –20 oC not only does not have an amplifying effect on the production of astaxanthin but also slightly reduces this effect. Also the effect of intervention of lactose sugar showed more effectiveness in producing astaxanthin than yeast extract or more than with the presence of both. The results also indicated that there is not much difference in the ability of producing the pigment by comparing both Lb. plantarum and Lb. acidophillus. Also results showed the microbial method of extraction of astaxanthin is more effective than chemical method. The pigment extracted from certain amount of shrimp powder, 23.128 mg/g, was calculated.

Abstract:
The velocity of perihelion rotation of Mercury's orbit relatively motionless space is computed. It is prove that it coincides with that calculated by the Newtonian interaction of the planets and of the compound model of the Sun’s rotation.

Abstract:
Ion beam deceleration properties of a newly developed low-energy ion beam implantation system were studied. The objective of this system was to produce general purpose low-energy (5 to 15 keV) implantations with high current beam of hundreds of μA level, providing the most wide implantation area possible and allowing continuously magnetic scanning of the beam over the sample(s). This paper describes the developed system installed in the high-current ion implanter at the Laboratory of Accelerators and Radiation Technologies of the Nuclear and Technological Cam-pus, Sacavém, Portugal (CTN).

Abstract:
If the augmented density of a spherical anisotropic system is assumed to be multiplicatively separable to functions of the potential and the radius, the radial function, which can be completely specified by the behavior of the anisotropy parameter alone, also fixes the anisotropic ratios of every higher-order velocity moment. It is inferred from this that the non-negativity of the distribution function necessarily limits the allowed behaviors of the radial function. This restriction is translated into the constraints on the behavior of the anisotropy parameter. We find that not all radial variations of the anisotropy parameter satisfy these constraints and thus that there exist anisotropy profiles that cannot be consistent with any separable augmented density.

Abstract:
This paper presents a set of new conditions on the augmented density of a spherical anisotropic system that is necessary for the underlying two-integral phase-space distribution function to be non-negative. In particular, it is shown that the partial derivatives of the Abel transformations of the augmented density must be non-negative. Applied for the separable augmented densities, this recovers the result of van Hese et al. (2011).

Abstract:
Under the separability assumption on the augmented density, a distribution function can be always constructed for a spherical population with the specified density and anisotropy profile. Then, a question arises, under what conditions the distribution constructed as such is non-negative everywhere in the entire accessible subvolume of the phase-space. We rediscover necessary conditions on the augmented density expressed with fractional calculus. The condition on the radius part R(r^2) -- whose logarithmic derivative is the anisotropy parameter -- is equivalent to R(1/w)/w being a completely monotonic function whereas the condition on the potential part is stated as its derivative up to the order not greater than 3/2-b being non-negative (where b is the central limiting value for the anisotropy parameter). We also derive the set of sufficient conditions on the separable augmented density for the non-negativity of the distribution, which generalizes the condition derived for the generalized Cuddeford system by Ciotti & Morganti to arbitrary separable systems. This is applied for the case when the anisotropy is parameterized by a monotonic function of the radius of Baes & Van Hese. The resulting criteria are found based on the complete monotonicity of generalized Mittag-Leffler functions.