oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2019 ( 7 )

2018 ( 6 )

2017 ( 10 )

2016 ( 14 )

Custom range...

Search Results: 1 - 10 of 6611 matches for " Irene Ayakaka equal contributor "
All listed articles are free for downloading (OA Articles)
Page 1 /6611
Display every page Item
Effectiveness of the Standard WHO Recommended Retreatment Regimen (Category II) for Tuberculosis in Kampala, Uganda: A Prospective Cohort Study
Edward C. Jones-López equal contributor ,Irene Ayakaka equal contributor,Jonathan Levin,Nancy Reilly,Francis Mumbowa,Scott Dryden-Peterson,Grace Nyakoojo,Kevin Fennelly,Beth Temple,Susan Nakubulwa,Moses L. Joloba,Alphonse Okwera,Kathleen D. Eisenach,Ruth McNerney,Alison M. Elliott,Jerrold J. Ellner,Peter G. Smith,Roy D. Mugerwa
PLOS Medicine , 2011, DOI: 10.1371/journal.pmed.1000427
Abstract: Background Each year, 10%–20% of patients with tuberculosis (TB) in low- and middle-income countries present with previously treated TB and are empirically started on a World Health Organization (WHO)-recommended standardized retreatment regimen. The effectiveness of this retreatment regimen has not been systematically evaluated. Methods and Findings From July 2003 to January 2007, we enrolled smear-positive, pulmonary TB patients into a prospective cohort to study treatment outcomes and mortality during and after treatment with the standardized retreatment regimen. Median time of follow-up was 21 months (interquartile range 12–33 months). A total of 29/148 (20%) HIV-uninfected and 37/140 (26%) HIV-infected patients had an unsuccessful treatment outcome. In a multiple logistic regression analysis to adjust for confounding, factors associated with an unsuccessful treatment outcome were poor adherence (adjusted odds ratio [aOR] associated with missing half or more of scheduled doses 2.39; 95% confidence interval (CI) 1.10–5.22), HIV infection (2.16; 1.01–4.61), age (aOR for 10-year increase 1.59; 1.13–2.25), and duration of TB symptoms (aOR for 1-month increase 1.12; 1.04–1.20). All patients with multidrug-resistant TB had an unsuccessful treatment outcome. HIV-infected individuals were more likely to die than HIV-uninfected individuals (p<0.0001). Multidrug-resistant TB at enrolment was the only common risk factor for death during follow-up for both HIV-infected (adjusted hazard ratio [aHR] 17.9; 6.0–53.4) and HIV-uninfected (14.7; 4.1–52.2) individuals. Other risk factors for death during follow-up among HIV-infected patients were CD4<50 cells/ml and no antiretroviral treatment (aHR 7.4, compared to patients with CD4≥200; 3.0–18.8) and Karnofsky score <70 (2.1; 1.1–4.1); and among HIV-uninfected patients were poor adherence (missing half or more of doses) (3.5; 1.1–10.6) and duration of TB symptoms (aHR for a 1-month increase 1.9; 1.0–3.5). Conclusions The recommended regimen for retreatment TB in Uganda yields an unacceptable proportion of unsuccessful outcomes. There is a need to evaluate new treatment strategies in these patients. Please see later in the article for the Editors' Summary
Oral Susceptibility of Singapore Aedes (Stegomyia) aegypti (Linnaeus) to Zika Virus
MeiZhi Irene Li equal contributor,Pei Sze Jeslyn Wong equal contributor,Lee Ching Ng,Cheong Huat Tan
PLOS Neglected Tropical Diseases , 2012, DOI: 10.1371/journal.pntd.0001792
Abstract: Background Zika virus (ZIKV) is a little known flavivirus that caused a major outbreak in 2007, in the South-western Pacific Island of Yap. It causes dengue-like syndromes but with milder symptoms. In Africa, where it was first isolated, ZIKV is mainly transmitted by sylvatic Aedes mosquitoes. The virus has also been isolated from Ae. aegypti and it is considered to be the vector involved in the urban transmission of the virus. Transmission of the virus by an African strain of Ae. aegypti has also been demonstrated under laboratory conditions. The aim of the present study is to describe the oral susceptibility of a Singapore strain of Ae. aegypti to ZIKV, under conditions that simulate local climate. Methodology/Principal Findings To assess the receptivity of Singapore's Ae. aegypti to the virus, we orally exposed a local mosquito strain to a Ugandan strain of ZIKV. Upon exposure, fully engorged mosquitoes were maintained in an environmental chamber set at 29°C and 70–75% RH. Eight mosquitoes were then sampled daily from day 1 to day 7, and subsequently on days 10 and 14 post exposure (pe). The virus titer of the midgut and salivary glands of each mosquito were determined using a tissue culture infectious dose50 (TCID50) assay. High midgut infection and salivary gland dissemination rates were observed. By day 5 after the infectious blood meal, ZIKV was found in the salivary glands of more than half of the mosquitoes tested (62%); and by day 10, all mosquitoes were potentially infective. Conclusions/Significance This study showed that Singapore's urban Ae. aegypti are susceptible and are potentially capable of transmitting ZIKV. The virus could be established in Singapore should it be introduced. Nevertheless, Singapore's current dengue control strategy is applicable to control ZIKV.
Positive Signature-Tagged Mutagenesis in Pseudomonas aeruginosa: Tracking Patho-Adaptive Mutations Promoting Airways Chronic Infection
Irene Bianconi equal contributor,Andrea Milani equal contributor,Cristina Cigana,Moira Paroni,Roger C. Levesque,Giovanni Bertoni,Alessandra Bragonzi
PLOS Pathogens , 2011, DOI: 10.1371/journal.ppat.1001270
Abstract: The opportunistic pathogen Pseudomonas aeruginosa can establish life-long chronic infections in the airways of cystic fibrosis (CF) patients. Persistent lifestyle is established with P. aeruginosa patho-adaptive variants, which are clonal with the initially-acquired strains. Several reports indicated that P. aeruginosa adapts by loss-of-function mutations which enhance fitness in CF airways and sustain its clonal expansion during chronic infection. To validate this model of P. aeruginosa adaptation to CF airways and to identify novel genes involved in this microevolution, we designed a novel approach of positive-selection screening by PCR-based signature-tagged mutagenesis (Pos-STM) in a murine model of chronic airways infection. A systematic positive-selection scheme using sequential rounds of in vivo screenings for bacterial maintenance, as opposed to elimination, generated a list of genes whose inactivation increased the colonization and persistence in chronic airways infection. The phenotypes associated to these Pos-STM mutations reflect alterations in diverse aspects of P. aeruginosa biology which include lack of swimming and twitching motility, lack of production of the virulence factors such as pyocyanin, biofilm formation, and metabolic functions. In addition, Pos-STM mutants showed altered invasion and stimulation of immune response when tested in human respiratory epithelial cells, indicating that P. aeruginosa is prone to revise the interaction with its host during persistent lifestyle. Finally, sequence analysis of Pos-STM genes in longitudinally P. aeruginosa isolates from CF patients identified signs of patho-adaptive mutations within the genome. This novel Pos-STM approach identified bacterial functions that can have important clinical implications for the persistent lifestyle and disease progression of the airway chronic infection.
Independent Pathways Can Transduce the Life-Cycle Differentiation Signal in Trypanosoma brucei
Balazs Sz??r ,Naomi A. Dyer equal contributor,Irene Ruberto equal contributor,Alvaro Acosta-Serrano,Keith R. Matthews
PLOS Pathogens , 2013, DOI: 10.1371/journal.ppat.1003689
Abstract: African trypanosomes cause disease in humans and livestock, generating significant health and welfare problems throughout sub-Saharan Africa. When ingested in a tsetse fly bloodmeal, trypanosomes must detect their new environment and initiate the developmental responses that ensure transmission. The best-established environmental signal is citrate/cis aconitate (CCA), this being transmitted through a protein phosphorylation cascade involving two phosphatases: one that inhibits differentiation (TbPTP1) and one that activates differentiation (TbPIP39). Other cues have been also proposed (mild acid, trypsin exposure, glucose depletion) but their physiological relevance and relationship to TbPTP1/TbPIP39 signalling is unknown. Here we demonstrate that mild acid and CCA operate through TbPIP39 phosphorylation, whereas trypsin attack of the parasite surface uses an alternative pathway that is dispensable in tsetse flies. Surprisingly, glucose depletion is not an important signal. Mechanistic analysis through biophysical methods suggests that citrate promotes differentiation by causing TbPTP1 and TbPIP39 to interact.
Massive Depletion of Bovine Leukemia Virus Proviral Clones Located in Genomic Transcriptionally Active Sites during Primary Infection
Nicolas A. Gillet ,Gerónimo Gutiérrez equal contributor,Sabrina M. Rodriguez equal contributor,Alix de Brogniez equal contributor,Nathalie Renotte,Irene Alvarez,Karina Trono,Luc Willems
PLOS Pathogens , 2013, DOI: 10.1371/journal.ppat.1003687
Abstract: Deltaretroviruses such as human T-lymphotropic virus type 1 (HTLV-1) and bovine leukemia virus (BLV) induce a persistent infection that remains generally asymptomatic but can also lead to leukemia or lymphoma. These viruses replicate by infecting new lymphocytes (i.e. the infectious cycle) or via clonal expansion of the infected cells (mitotic cycle). The relative importance of these two cycles in viral replication varies during infection. The majority of infected clones are created early before the onset of an efficient immune response. Later on, the main replication route is mitotic expansion of pre-existing infected clones. Due to the paucity of available samples and for ethical reasons, only scarce data is available on early infection by HTLV-1. Therefore, we addressed this question in a comparative BLV model. We used high-throughput sequencing to map and quantify the insertion sites of the provirus in order to monitor the clonality of the BLV-infected cells population (i.e. the number of distinct clones and abundance of each clone). We found that BLV propagation shifts from cell neoinfection to clonal proliferation in about 2 months from inoculation. Initially, BLV proviral integration significantly favors transcribed regions of the genome. Negative selection then eliminates 97% of the clones detected at seroconversion and disfavors BLV-infected cells carrying a provirus located close to a promoter or a gene. Nevertheless, among the surviving proviruses, clone abundance positively correlates with proximity of the provirus to a transcribed region. Two opposite forces thus operate during primary infection and dictate the fate of long term clonal composition: (1) initial integration inside genes or promoters and (2) host negative selection disfavoring proviruses located next to transcribed regions. The result of this initial response will contribute to the proviral load set point value as clonal abundance will benefit from carrying a provirus in transcribed regions.
The Timing of Differentiation of Adult Hippocampal Neurons Is Crucial for Spatial Memory
Stefano Farioli-Vecchioli equal contributor,Daniele Saraulli equal contributor,Marco Costanzi equal contributor,Simone Pacioni equal contributor,Irene Cinà,Massimiliano Aceti,Laura Micheli,Alberto Bacci,Vincenzo Cestari,Felice Tirone
PLOS Biology , 2008, DOI: 10.1371/journal.pbio.0060246
Abstract: Adult neurogenesis in the dentate gyrus plays a critical role in hippocampus-dependent spatial learning. It remains unknown, however, how new neurons become functionally integrated into spatial circuits and contribute to hippocampus-mediated forms of learning and memory. To investigate these issues, we used a mouse model in which the differentiation of adult-generated dentate gyrus neurons can be anticipated by conditionally expressing the pro-differentiative gene PC3 (Tis21/BTG2) in nestin-positive progenitor cells. In contrast to previous studies that affected the number of newly generated neurons, this strategy selectively changes their timing of differentiation. New, adult-generated dentate gyrus progenitors, in which the PC3 transgene was expressed, showed accelerated differentiation and significantly reduced dendritic arborization and spine density. Functionally, this genetic manipulation specifically affected different hippocampus-dependent learning and memory tasks, including contextual fear conditioning, and selectively reduced synaptic plasticity in the dentate gyrus. Morphological and functional analyses of hippocampal neurons at different stages of differentiation, following transgene activation within defined time-windows, revealed that the new, adult-generated neurons up to 3–4 weeks of age are required not only to acquire new spatial information but also to use previously consolidated memories. Thus, the correct unwinding of these key memory functions, which can be an expression of the ability of adult-generated neurons to link subsequent events in memory circuits, is critically dependent on the correct timing of the initial stages of neuron maturation and connection to existing circuits.
Cell-Cell Transmission Enables HIV-1 to Evade Inhibition by Potent CD4bs Directed Antibodies
Irene A. Abela equal contributor,Livia Berlinger equal contributor,Merle Schanz,Lucy Reynell,Huldrych F. Günthard,Peter Rusert,Alexandra Trkola
PLOS Pathogens , 2012, DOI: 10.1371/journal.ppat.1002634
Abstract: HIV is known to spread efficiently both in a cell-free state and from cell to cell, however the relative importance of the cell-cell transmission mode in natural infection has not yet been resolved. Likewise to what extent cell-cell transmission is vulnerable to inhibition by neutralizing antibodies and entry inhibitors remains to be determined. Here we report on neutralizing antibody activity during cell-cell transmission using specifically tailored experimental strategies which enable unambiguous discrimination between the two transmission routes. We demonstrate that the activity of neutralizing monoclonal antibodies (mAbs) and entry inhibitors during cell-cell transmission varies depending on their mode of action. While gp41 directed agents remain active, CD4 binding site (CD4bs) directed inhibitors, including the potent neutralizing mAb VRC01, dramatically lose potency during cell-cell transmission. This implies that CD4bs mAbs act preferentially through blocking free virus transmission, while still allowing HIV to spread through cell-cell contacts. Thus providing a plausible explanation for how HIV maintains infectivity and rapidly escapes potent and broadly active CD4bs directed antibody responses in vivo.
Stimulation of Chitin Synthesis Rescues Candida albicans from Echinocandins
Louise A. Walker equal contributor,Carol A. Munro equal contributor,Irene de Bruijn,Megan D. Lenardon,Alastair McKinnon,Neil A. R. Gow
PLOS Pathogens , 2008, DOI: 10.1371/journal.ppat.1000040
Abstract: Echinocandins are a new generation of novel antifungal agent that inhibit cell wall β(1,3)-glucan synthesis and are normally cidal for the human pathogen Candida albicans. Treatment of C. albicans with low levels of echinocandins stimulated chitin synthase (CHS) gene expression, increased Chs activity, elevated chitin content and reduced efficacy of these drugs. Elevation of chitin synthesis was mediated via the PKC, HOG, and Ca2+-calcineurin signalling pathways. Stimulation of Chs2p and Chs8p by activators of these pathways enabled cells to survive otherwise lethal concentrations of echinocandins, even in the absence of Chs3p and the normally essential Chs1p, which synthesize the chitinous septal ring and primary septum of the fungus. Under such conditions, a novel proximally offset septum was synthesized that restored the capacity for cell division, sustained the viability of the cell, and abrogated morphological and growth defects associated with echinocandin treatment and the chs mutations. These findings anticipate potential resistance mechanisms to echinocandins. However, echinocandins and chitin synthase inhibitors synergized strongly, highlighting the potential for combination therapies with greatly enhanced cidal activity.
The Molecular Anatomy of Spontaneous Germline Mutations in Human Testes
Jian Qin equal contributor,Peter Calabrese equal contributor,Irene Tiemann-Boege,Deepali Narendra Shinde,Song-Ro Yoon,David Gelfand,Keith Bauer,Norman Arnheim
PLOS Biology , 2007, DOI: 10.1371/journal.pbio.0050224
Abstract: The frequency of the most common sporadic Apert syndrome mutation (C755G) in the human fibroblast growth factor receptor 2 gene (FGFR2) is 100–1,000 times higher than expected from average nucleotide substitution rates based on evolutionary studies and the incidence of human genetic diseases. To determine if this increased frequency was due to the nucleotide site having the properties of a mutation hot spot, or some other explanation, we developed a new experimental approach. We examined the spatial distribution of the frequency of the C755G mutation in the germline by dividing four testes from two normal individuals each into several hundred pieces, and, using a highly sensitive PCR assay, we measured the mutation frequency of each piece. We discovered that each testis was characterized by rare foci with mutation frequencies 103 to >104 times higher than the rest of the testis regions. Using a model based on what is known about human germline development forced us to reject (p < 10?6) the idea that the C755G mutation arises more frequently because this nucleotide simply has a higher than average mutation rate (hot spot model). This is true regardless of whether mutation is dependent or independent of cell division. An alternate model was examined where positive selection acts on adult self-renewing Ap spermatogonial cells (SrAp) carrying this mutation such that, instead of only replacing themselves, they occasionally produce two SrAp cells. This model could not be rejected given our observed data. Unlike the disease site, similar analysis of C-to-G mutations at a control nucleotide site in one testis pair failed to find any foci with high mutation frequencies. The rejection of the hot spot model and lack of rejection of a selection model for the C755G mutation, along with other data, provides strong support for the proposal that positive selection in the testis can act to increase the frequency of premeiotic germ cells carrying a mutation deleterious to an offspring, thereby unfavorably altering the mutational load in humans. Studying the anatomical distribution of germline mutations can provide new insights into genetic disease and evolutionary change.
Superhelical Architecture of the Myosin Filament-Linking Protein Myomesin with Unusual Elastic Properties
Nikos Pinotsis equal contributor,Spyros D. Chatziefthimiou equal contributor,Felix Berkemeier,Fabienne Beuron,Irene M. Mavridis,Petr V. Konarev,Dmitri I. Svergun,Edward Morris,Matthias Rief,Matthias Wilmanns
PLOS Biology , 2012, DOI: 10.1371/journal.pbio.1001261
Abstract: Active muscles generate substantial mechanical forces by the contraction/relaxation cycle, and, to maintain an ordered state, they require molecular structures of extraordinary stability. These forces are sensed and buffered by unusually long and elastic filament proteins with highly repetitive domain arrays. Members of the myomesin protein family function as molecular bridges that connect major filament systems in the central M-band of muscle sarcomeres, which is a central locus of passive stress sensing. To unravel the mechanism of molecular elasticity in such filament-connecting proteins, we have determined the overall architecture of the complete C-terminal immunoglobulin domain array of myomesin by X-ray crystallography, electron microscopy, solution X-ray scattering, and atomic force microscopy. Our data reveal a dimeric tail-to-tail filament structure of about 360 ? in length, which is folded into an irregular superhelical coil arrangement of almost identical α-helix/domain modules. The myomesin filament can be stretched to about 2.5-fold its original length by reversible unfolding of these linkers, a mechanism that to our knowledge has not been observed previously. Our data explain how myomesin could act as a highly elastic ribbon to maintain the overall structural organization of the sarcomeric M-band. In general terms, our data demonstrate how repetitive domain modules such as those found in myomesin could generate highly elastic protein structures in highly organized cell systems such as muscle sarcomeres.
Page 1 /6611
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.