oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2017 ( 3 )

2016 ( 1 )

2015 ( 25 )

2014 ( 30 )

Custom range...

Search Results: 1 - 10 of 361 matches for " Ilias Diakonikolas "
All listed articles are free for downloading (OA Articles)
Page 1 /361
Display every page Item
Small Approximate Pareto Sets for Bi-objective Shortest Paths and Other Problems
Ilias Diakonikolas,Mihalis Yannakakis
Computer Science , 2008,
Abstract: We investigate the problem of computing a minimum set of solutions that approximates within a specified accuracy $\epsilon$ the Pareto curve of a multiobjective optimization problem. We show that for a broad class of bi-objective problems (containing many important widely studied problems such as shortest paths, spanning tree, and many others), we can compute in polynomial time an $\epsilon$-Pareto set that contains at most twice as many solutions as the minimum such set. Furthermore we show that the factor of 2 is tight for these problems, i.e., it is NP-hard to do better. We present upper and lower bounds for three or more objectives, as well as for the dual problem of computing a specified number $k$ of solutions which provide a good approximation to the Pareto curve.
Improved Approximation of Linear Threshold Functions
Ilias Diakonikolas,Rocco A. Servedio
Computer Science , 2009,
Abstract: We prove two main results on how arbitrary linear threshold functions $f(x) = \sign(w\cdot x - \theta)$ over the $n$-dimensional Boolean hypercube can be approximated by simple threshold functions. Our first result shows that every $n$-variable threshold function $f$ is $\eps$-close to a threshold function depending only on $\Inf(f)^2 \cdot \poly(1/\eps)$ many variables, where $\Inf(f)$ denotes the total influence or average sensitivity of $f.$ This is an exponential sharpening of Friedgut's well-known theorem \cite{Friedgut:98}, which states that every Boolean function $f$ is $\eps$-close to a function depending only on $2^{O(\Inf(f)/\eps)}$ many variables, for the case of threshold functions. We complement this upper bound by showing that $\Omega(\Inf(f)^2 + 1/\epsilon^2)$ many variables are required for $\epsilon$-approximating threshold functions. Our second result is a proof that every $n$-variable threshold function is $\eps$-close to a threshold function with integer weights at most $\poly(n) \cdot 2^{\tilde{O}(1/\eps^{2/3})}.$ This is a significant improvement, in the dependence on the error parameter $\eps$, on an earlier result of \cite{Servedio:07cc} which gave a $\poly(n) \cdot 2^{\tilde{O}(1/\eps^{2})}$ bound. Our improvement is obtained via a new proof technique that uses strong anti-concentration bounds from probability theory. The new technique also gives a simple and modular proof of the original \cite{Servedio:07cc} result, and extends to give low-weight approximators for threshold functions under a range of probability distributions beyond just the uniform distribution.
Bounded Independence Fools Degree-2 Threshold Functions
Ilias Diakonikolas,Daniel M. Kane,Jelani Nelson
Computer Science , 2009,
Abstract: Let x be a random vector coming from any k-wise independent distribution over {-1,1}^n. For an n-variate degree-2 polynomial p, we prove that E[sgn(p(x))] is determined up to an additive epsilon for k = poly(1/epsilon). This answers an open question of Diakonikolas et al. (FOCS 2009). Using standard constructions of k-wise independent distributions, we obtain a broad class of explicit generators that epsilon-fool the class of degree-2 threshold functions with seed length log(n)*poly(1/epsilon). Our approach is quite robust: it easily extends to yield that the intersection of any constant number of degree-2 threshold functions is epsilon-fooled by poly(1/epsilon)-wise independence. Our results also hold if the entries of x are k-wise independent standard normals, implying for example that bounded independence derandomizes the Goemans-Williamson hyperplane rounding scheme. To achieve our results, we introduce a technique we dub multivariate FT-mollification, a generalization of the univariate form introduced by Kane et al. (SODA 2010) in the context of streaming algorithms. Along the way we prove a generalized hypercontractive inequality for quadratic forms which takes the operator norm of the associated matrix into account. These techniques may be of independent interest.
Learning $k$-Modal Distributions via Testing
Constantinos Daskalakis,Ilias Diakonikolas,Rocco A. Servedio
Computer Science , 2011,
Abstract: A $k$-modal probability distribution over the discrete domain $\{1,...,n\}$ is one whose histogram has at most $k$ "peaks" and "valleys." Such distributions are natural generalizations of monotone ($k=0$) and unimodal ($k=1$) probability distributions, which have been intensively studied in probability theory and statistics. In this paper we consider the problem of \emph{learning} (i.e., performing density estimation of) an unknown $k$-modal distribution with respect to the $L_1$ distance. The learning algorithm is given access to independent samples drawn from an unknown $k$-modal distribution $p$, and it must output a hypothesis distribution $\widehat{p}$ such that with high probability the total variation distance between $p$ and $\widehat{p}$ is at most $\epsilon.$ Our main goal is to obtain \emph{computationally efficient} algorithms for this problem that use (close to) an information-theoretically optimal number of samples. We give an efficient algorithm for this problem that runs in time $\mathrm{poly}(k,\log(n),1/\epsilon)$. For $k \leq \tilde{O}(\log n)$, the number of samples used by our algorithm is very close (within an $\tilde{O}(\log(1/\epsilon))$ factor) to being information-theoretically optimal. Prior to this work computationally efficient algorithms were known only for the cases $k=0,1$ \cite{Birge:87b,Birge:97}. A novel feature of our approach is that our learning algorithm crucially uses a new algorithm for \emph{property testing of probability distributions} as a key subroutine. The learning algorithm uses the property tester to efficiently decompose the $k$-modal distribution into $k$ (near-)monotone distributions, which are easier to learn.
Learning Poisson Binomial Distributions
Constantinos Daskalakis,Ilias Diakonikolas,Rocco A. Servedio
Computer Science , 2011,
Abstract: We consider a basic problem in unsupervised learning: learning an unknown \emph{Poisson Binomial Distribution}. A Poisson Binomial Distribution (PBD) over $\{0,1,\dots,n\}$ is the distribution of a sum of $n$ independent Bernoulli random variables which may have arbitrary, potentially non-equal, expectations. These distributions were first studied by S. Poisson in 1837 \cite{Poisson:37} and are a natural $n$-parameter generalization of the familiar Binomial Distribution. Surprisingly, prior to our work this basic learning problem was poorly understood, and known results for it were far from optimal. We essentially settle the complexity of the learning problem for this basic class of distributions. As our first main result we give a highly efficient algorithm which learns to $\eps$-accuracy (with respect to the total variation distance) using $\tilde{O}(1/\eps^3)$ samples \emph{independent of $n$}. The running time of the algorithm is \emph{quasilinear} in the size of its input data, i.e., $\tilde{O}(\log(n)/\eps^3)$ bit-operations. (Observe that each draw from the distribution is a $\log(n)$-bit string.) Our second main result is a {\em proper} learning algorithm that learns to $\eps$-accuracy using $\tilde{O}(1/\eps^2)$ samples, and runs in time $(1/\eps)^{\poly (\log (1/\eps))} \cdot \log n$. This is nearly optimal, since any algorithm {for this problem} must use $\Omega(1/\eps^2)$ samples. We also give positive and negative results for some extensions of this learning problem to weighted sums of independent Bernoulli random variables.
Learning transformed product distributions
Constantinos Daskalakis,Ilias Diakonikolas,Rocco A. Servedio
Computer Science , 2011,
Abstract: We consider the problem of learning an unknown product distribution $X$ over $\{0,1\}^n$ using samples $f(X)$ where $f$ is a \emph{known} transformation function. Each choice of a transformation function $f$ specifies a learning problem in this framework. Information-theoretic arguments show that for every transformation function $f$ the corresponding learning problem can be solved to accuracy $\eps$, using $\tilde{O}(n/\eps^2)$ examples, by a generic algorithm whose running time may be exponential in $n.$ We show that this learning problem can be computationally intractable even for constant $\eps$ and rather simple transformation functions. Moreover, the above sample complexity bound is nearly optimal for the general problem, as we give a simple explicit linear transformation function $f(x)=w \cdot x$ with integer weights $w_i \leq n$ and prove that the corresponding learning problem requires $\Omega(n)$ samples. As our main positive result we give a highly efficient algorithm for learning a sum of independent unknown Bernoulli random variables, corresponding to the transformation function $f(x)= \sum_{i=1}^n x_i$. Our algorithm learns to $\eps$-accuracy in poly$(n)$ time, using a surprising poly$(1/\eps)$ number of samples that is independent of $n.$ We also give an efficient algorithm that uses $\log n \cdot \poly(1/\eps)$ samples but has running time that is only $\poly(\log n, 1/\eps).$
The Inverse Shapley Value Problem
Anindya De,Ilias Diakonikolas,Rocco A. Servedio
Computer Science , 2012,
Abstract: For $f$ a weighted voting scheme used by $n$ voters to choose between two candidates, the $n$ \emph{Shapley-Shubik Indices} (or {\em Shapley values}) of $f$ provide a measure of how much control each voter can exert over the overall outcome of the vote. Shapley-Shubik indices were introduced by Lloyd Shapley and Martin Shubik in 1954 \cite{SS54} and are widely studied in social choice theory as a measure of the "influence" of voters. The \emph{Inverse Shapley Value Problem} is the problem of designing a weighted voting scheme which (approximately) achieves a desired input vector of values for the Shapley-Shubik indices. Despite much interest in this problem no provably correct and efficient algorithm was known prior to our work. We give the first efficient algorithm with provable performance guarantees for the Inverse Shapley Value Problem. For any constant $\eps > 0$ our algorithm runs in fixed poly$(n)$ time (the degree of the polynomial is independent of $\eps$) and has the following performance guarantee: given as input a vector of desired Shapley values, if any "reasonable" weighted voting scheme (roughly, one in which the threshold is not too skewed) approximately matches the desired vector of values to within some small error, then our algorithm explicitly outputs a weighted voting scheme that achieves this vector of Shapley values to within error $\eps.$ If there is a "reasonable" voting scheme in which all voting weights are integers at most $\poly(n)$ that approximately achieves the desired Shapley values, then our algorithm runs in time $\poly(n)$ and outputs a weighted voting scheme that achieves the target vector of Shapley values to within error $\eps=n^{-1/8}.$
Deterministic Approximate Counting for Juntas of Degree-$2$ Polynomial Threshold Functions
Anindya De,Ilias Diakonikolas,Rocco A. Servedio
Computer Science , 2013,
Abstract: Let $g: \{-1,1\}^k \to \{-1,1\}$ be any Boolean function and $q_1,\dots,q_k$ be any degree-2 polynomials over $\{-1,1\}^n.$ We give a \emph{deterministic} algorithm which, given as input explicit descriptions of $g,q_1,\dots,q_k$ and an accuracy parameter $\eps>0$, approximates \[\Pr_{x \sim \{-1,1\}^n}[g(\sign(q_1(x)),\dots,\sign(q_k(x)))=1]\] to within an additive $\pm \eps$. For any constant $\eps > 0$ and $k \geq 1$ the running time of our algorithm is a fixed polynomial in $n$. This is the first fixed polynomial-time algorithm that can deterministically approximately count satisfying assignments of a natural class of depth-3 Boolean circuits. Our algorithm extends a recent result \cite{DDS13:deg2count} which gave a deterministic approximate counting algorithm for a single degree-2 polynomial threshold function $\sign(q(x)),$ corresponding to the $k=1$ case of our result. Our algorithm and analysis requires several novel technical ingredients that go significantly beyond the tools required to handle the $k=1$ case in \cite{DDS13:deg2count}. One of these is a new multidimensional central limit theorem for degree-2 polynomials in Gaussian random variables which builds on recent Malliavin-calculus-based results from probability theory. We use this CLT as the basis of a new decomposition technique for $k$-tuples of degree-2 Gaussian polynomials and thus obtain an efficient deterministic approximate counting algorithm for the Gaussian distribution. Finally, a third new ingredient is a "regularity lemma" for \emph{$k$-tuples} of degree-$d$ polynomial threshold functions. This generalizes both the regularity lemmas of \cite{DSTW:10,HKM:09} and the regularity lemma of Gopalan et al \cite{GOWZ10}. Our new regularity lemma lets us extend our deterministic approximate counting results from the Gaussian to the Boolean domain.
Deterministic Approximate Counting for Degree-$2$ Polynomial Threshold Functions
Anindya De,Ilias Diakonikolas,Rocco A. Servedio
Computer Science , 2013,
Abstract: We give a {\em deterministic} algorithm for approximately computing the fraction of Boolean assignments that satisfy a degree-$2$ polynomial threshold function. Given a degree-2 input polynomial $p(x_1,\dots,x_n)$ and a parameter $\eps > 0$, the algorithm approximates \[ \Pr_{x \sim \{-1,1\}^n}[p(x) \geq 0] \] to within an additive $\pm \eps$ in time $\poly(n,2^{\poly(1/\eps)})$. Note that it is NP-hard to determine whether the above probability is nonzero, so any sort of multiplicative approximation is almost certainly impossible even for efficient randomized algorithms. This is the first deterministic algorithm for this counting problem in which the running time is polynomial in $n$ for $\eps= o(1)$. For "regular" polynomials $p$ (those in which no individual variable's influence is large compared to the sum of all $n$ variable influences) our algorithm runs in $\poly(n,1/\eps)$ time. The algorithm also runs in $\poly(n,1/\eps)$ time to approximate $\Pr_{x \sim N(0,1)^n}[p(x) \geq 0]$ to within an additive $\pm \eps$, for any degree-2 polynomial $p$. As an application of our counting result, we give a deterministic FPT multiplicative $(1 \pm \eps)$-approximation algorithm to approximate the $k$-th absolute moment $\E_{x \sim \{-1,1\}^n}[|p(x)^k|]$ of a degree-2 polynomial. The algorithm's running time is of the form $\poly(n) \cdot f(k,1/\eps)$.
Testing Identity of Structured Distributions
Ilias Diakonikolas,Daniel M. Kane,Vladimir Nikishkin
Computer Science , 2014,
Abstract: We study the question of identity testing for structured distributions. More precisely, given samples from a {\em structured} distribution $q$ over $[n]$ and an explicit distribution $p$ over $[n]$, we wish to distinguish whether $q=p$ versus $q$ is at least $\epsilon$-far from $p$, in $L_1$ distance. In this work, we present a unified approach that yields new, simple testers, with sample complexity that is information-theoretically optimal, for broad classes of structured distributions, including $t$-flat distributions, $t$-modal distributions, log-concave distributions, monotone hazard rate (MHR) distributions, and mixtures thereof.
Page 1 /361
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.